Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton reveals a tumbling neutron star

19.04.2006


Using data from ESA’s XMM-Newton X-ray observatory, an international group of astrophysicists discovered that one spinning neutron star doesn’t appear to be the stable rotator scientists would expect. These X-ray observations promise to give new insights into the thermal evolution and finally the interior structure of neutron stars.

Spinning neutron stars, also known as pulsars, are generally known to be highly stable rotators. Thanks to their periodic signals, emitted either in the radio or in the X-ray wavelength, they can serve as very accurate astronomical ‘clocks’.

The scientists found that over the past four and a half years the temperature of one enigmatic object, named RX J0720.4-3125, kept rising. However, very recent observations have shown that this trend reversed and the temperature is now decreasing.



According to the scientists this effect is not due to a real variation in temperature, but instead to a changing viewing geometry. RX J0720.4-3125 is most probably ‘precessing’, that is it is slowly tumbling and therefore, over time, it exposes to the observers different areas of the surface.

Neutron stars are one of the endpoints of stellar evolution. With a mass comparable to that of our Sun confined into a sphere of 20-40 km diameter, their density is even somewhat higher than that of an atomic nucleus - a billion tonnes per cubic centimetre. Soon after their birth in a supernova explosion their temperature is of the order of 1 000 000 ºC and the bulk of their thermal emission falls in the X-ray band of the electromagnetic spectrum. Young isolated neutron stars are slowly cooling down and it takes a million years before they become too cold to be observable in X-rays.

Neutron stars are known to possess very strong magnetic fields, typically several trillion times stronger than that of the Earth. The magnetic field can be so strong that it influences the heat transport from the stellar interior through the crust leading to hot spots around the magnetic poles on the star surface.

It is the emission from these hotter polar caps which dominates the X-ray spectrum. There are only a few isolated neutron stars known from which we can directly observe the thermal emission from the surface of the star. One of them is RX J0720.4-3125, rotating with a period of about eight and a half seconds. “Given the long cooling time scale it was therefore highly unexpected to see its X-ray spectrum changing over a couple of years,” said Frank Haberl from the Max-Planck-Institute for Extraterrestrial Physics in Garching (Germany), who led the research group.

“It is very unlikely that the global temperature of the neutron star changes that quickly. We are rather seeing different areas of the stellar surface at different times. This is also observed during the rotation period of the neutron star when the hot spots are moving in and out of our line of sight, and so their contribution to the total emission changes,” Haberl continued.

A similar effect on a much longer time scale can be observed when the neutron star precesses (similarly to a spinning top). In that case the rotation axis itself moves around a cone leading to a slow change of the viewing geometry over the years. Free precession can be caused by a slight deformation of the star from a perfect sphere, which may have its origin in the very strong magnetic field

During the first XMM-Newton observation of RX J0720.4-3125 in May 2000, the observed temperature was at minimum and the cooler, larger spot was predominantly visible. On the other hand, four years later (May 2004) the precession brought into view mostly the second, hotter and smaller spot, that made the observed temperature increase. This likely explains the observed variation in temperature and emitting areas, and their anti-correlation.

In their work Haberl and colleagues developed a model for RX J0720.4-3125 which can explain many of the peculiar characteristics which have been a challenge to explain so far. In this model the long-term change in temperature is produced by the different fractions of the two hot polar caps which enter into view as the star precesses with a period of about seven to eight years.

In order for such a model to work, the two emitting polar regions need to have different temperatures and sizes, as it has been recently proposed in the case of another member of the same class of isolated neutron stars.

According to the team, RX J0720.4-3125 is probably the best case to study precession of a neutron star via its X-ray emission directly visible from the stellar surface. Precession may be a powerful tool to probe the neutron star interior and learn about the state of matter under conditions which we can not produce in the laboratory.

Additional XMM-Newton observations are planned to further monitor this intriguing object. “We are continuing the theoretical modelling from which we hope to learn more about the thermal evolution, the magnetic field geometry of this particular star and the interior structure of neutron stars in general,” Haberl concluded.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMSIWNFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>