Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton reveals a tumbling neutron star

19.04.2006


Using data from ESA’s XMM-Newton X-ray observatory, an international group of astrophysicists discovered that one spinning neutron star doesn’t appear to be the stable rotator scientists would expect. These X-ray observations promise to give new insights into the thermal evolution and finally the interior structure of neutron stars.

Spinning neutron stars, also known as pulsars, are generally known to be highly stable rotators. Thanks to their periodic signals, emitted either in the radio or in the X-ray wavelength, they can serve as very accurate astronomical ‘clocks’.

The scientists found that over the past four and a half years the temperature of one enigmatic object, named RX J0720.4-3125, kept rising. However, very recent observations have shown that this trend reversed and the temperature is now decreasing.



According to the scientists this effect is not due to a real variation in temperature, but instead to a changing viewing geometry. RX J0720.4-3125 is most probably ‘precessing’, that is it is slowly tumbling and therefore, over time, it exposes to the observers different areas of the surface.

Neutron stars are one of the endpoints of stellar evolution. With a mass comparable to that of our Sun confined into a sphere of 20-40 km diameter, their density is even somewhat higher than that of an atomic nucleus - a billion tonnes per cubic centimetre. Soon after their birth in a supernova explosion their temperature is of the order of 1 000 000 ºC and the bulk of their thermal emission falls in the X-ray band of the electromagnetic spectrum. Young isolated neutron stars are slowly cooling down and it takes a million years before they become too cold to be observable in X-rays.

Neutron stars are known to possess very strong magnetic fields, typically several trillion times stronger than that of the Earth. The magnetic field can be so strong that it influences the heat transport from the stellar interior through the crust leading to hot spots around the magnetic poles on the star surface.

It is the emission from these hotter polar caps which dominates the X-ray spectrum. There are only a few isolated neutron stars known from which we can directly observe the thermal emission from the surface of the star. One of them is RX J0720.4-3125, rotating with a period of about eight and a half seconds. “Given the long cooling time scale it was therefore highly unexpected to see its X-ray spectrum changing over a couple of years,” said Frank Haberl from the Max-Planck-Institute for Extraterrestrial Physics in Garching (Germany), who led the research group.

“It is very unlikely that the global temperature of the neutron star changes that quickly. We are rather seeing different areas of the stellar surface at different times. This is also observed during the rotation period of the neutron star when the hot spots are moving in and out of our line of sight, and so their contribution to the total emission changes,” Haberl continued.

A similar effect on a much longer time scale can be observed when the neutron star precesses (similarly to a spinning top). In that case the rotation axis itself moves around a cone leading to a slow change of the viewing geometry over the years. Free precession can be caused by a slight deformation of the star from a perfect sphere, which may have its origin in the very strong magnetic field

During the first XMM-Newton observation of RX J0720.4-3125 in May 2000, the observed temperature was at minimum and the cooler, larger spot was predominantly visible. On the other hand, four years later (May 2004) the precession brought into view mostly the second, hotter and smaller spot, that made the observed temperature increase. This likely explains the observed variation in temperature and emitting areas, and their anti-correlation.

In their work Haberl and colleagues developed a model for RX J0720.4-3125 which can explain many of the peculiar characteristics which have been a challenge to explain so far. In this model the long-term change in temperature is produced by the different fractions of the two hot polar caps which enter into view as the star precesses with a period of about seven to eight years.

In order for such a model to work, the two emitting polar regions need to have different temperatures and sizes, as it has been recently proposed in the case of another member of the same class of isolated neutron stars.

According to the team, RX J0720.4-3125 is probably the best case to study precession of a neutron star via its X-ray emission directly visible from the stellar surface. Precession may be a powerful tool to probe the neutron star interior and learn about the state of matter under conditions which we can not produce in the laboratory.

Additional XMM-Newton observations are planned to further monitor this intriguing object. “We are continuing the theoretical modelling from which we hope to learn more about the thermal evolution, the magnetic field geometry of this particular star and the interior structure of neutron stars in general,” Haberl concluded.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMSIWNFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>