Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solitons Seen in a Solid


Isolated vibrations within a three-dimensional solid have been observed for the first time by researchers in the U.S. and Germany. The work could help explain how metals such as uranium behave when bent, compressed or heated.

Normally, atoms in a crystal will pass their vibrational energy to their neighbors. But under some circumstances, theory predicts that a small patch of atoms could vibrate in place. This is the first time that these "lattice solitons" have been detected in a three-dimensional solid, said Michael Manley, visiting professor of chemical engineering and materials science at UC Davis and a researcher at the Los Alamos National Laboratory, who is first author on the paper.

The researchers used X-ray and neutron scattering experiments to identify lattice solitons in heated uranium crystals. The results show that the isolated vibrations play an important role in uranium metal, something no one had previously considered, Manley said.

Lattice solitons should actually occur in all kinds of solid materials, but they are very hard to find because they appear and disappear so quickly, Manley said. The significance of the paper is that the researchers were able to see them, he said.

Solitons, or solitary waves, were first described by Scottish scientist John Scott Russell in 1834 after seeing such a wave on a canal. In the late 1980s, scientists theorized that solitons might exist in solids and molecules, calling them intrinsic localized modes or discrete breathers, but had no physical evidence of their existence.

In addition to Manley, the research group included Heather Volz, Jason Lashley, Larry Hults and Jim Smith from Los Alamos; Mohana Yethiraj from Oak Ridge National Laboratory; Harald Sinn and Ahmet Alatas from Argonne National Laboratory; and Gerry Lander from Institute for Transuranium Elements in Karlsruhe, Germany. The research is published in Physical Review Letters.

Andy Fell | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>