Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopore Method Could Revolutionize Genome Sequencing

10.04.2006


A team led by physicists at the University of California, San Diego has shown the feasibility of a fast, inexpensive technique to sequence DNA as it passes through tiny pores. The advance brings personalized, genome-based medicine closer to reality.


DNA and Nanopore from Above. Credit: Johan Lagerqvist



The paper, published in the April issue of the journal Nano Letters, describes a method to sequence a human genome in a matter of hours at a potentially low cost, by measuring the electrical perturbations generated by a single strand of DNA as it passes through a pore more than a thousand times smaller than the diameter of a human hair. Because sequencing a person’s genome would take several months and millions of dollars with current DNA sequencing technology, the researchers say that the new method has the potential to usher in a revolution in medicine.

“Current DNA sequencing methods are too slow and expensive for it to be realistic to sequence people’s genomes to tailor medical treatments for each individual,” said Massimiliano Di Ventra, an associate professor of physics at UCSD who directed the project. “The practical implementation of our approach could make the dream of personalizing medicine according to a person’s unique genetic makeup a reality.”


The physicists used mathematical calculations and computer modeling of the motions and electrical fluctuations of DNA molecules to determine how to distinguish each of the four different bases (A, G, C, T) that constitute a strand of DNA. They based their calculations on a pore about a nanometer in diameter made from silicon nitride—a material that is easy to work with and commonly used in nanostructures—surrounded by two pairs of tiny gold electrodes. The electrodes would record the electrical current perpendicular to the DNA strand as the DNA passed through the pore. Because each DNA base is structurally and chemically different, each base creates its own distinct electronic signature.

Previous attempts to sequence DNA using nanopores were not successful because the twisting and turning of the DNA strand introduced too much noise into the signal being recorded. The new idea takes advantage of the electric field that drives the current perpendicular to the DNA strand to reduce the structural fluctuations of DNA while it moves through the pore, thus minimizing the noise.

“If nature was very unkind, then the DNA would always fluctuate so much as it passes through the nanopore that measuring the current would not give us any information about what base is present at a particular location,” explained Michael Zwolak, a graduate student in physics at the California Institute of Technology who contributed to the study. “However, we have identified a particular way to operate the nanopore/electrode system that suppresses some of the fluctuations so they aren’t so great as to destroy the distinguishability of the bases.”

The researchers caution that there are still hurdles to overcome because no one has yet made a nanopore with the required configuration of electrodes, but they think it is only a matter of time before someone successfully assembles the device. The nanopore and the electrodes have been made separately, and although it is technically challenging to bring them together, the field is advancing so rapidly that they think it should be possible in the near future.

In addition to the speed and low cost of the nanopore method, the researchers calculate that it will ultimately be significantly less error-prone than current methods.

“The DNA sequencing method we propose has the potential of having fewer errors than the present method, which is based on the Sanger method,” said Johan Lagerqvist, a graduate student in physics at UCSD and the lead author on the paper. “It should be possible to sequence strands of DNA that are tens of thousands of base pairs in length, possibly as long as an entire gene, in one pass through the nanopore. With the Sanger method it is necessary to chop the DNA into smaller pieces, copy the DNA and use multiple sequencing machines, which introduces additional sources of error.”

The study was funded by the National Science Foundation and by the National Human Genome Research Institute at the National Institutes of Health. The NIH funds are from a program launched in 2004 to encourage researchers to pursue a wide range of ideas to sequence a mammal-sized genome for $1,000. The researchers say that as physicists they take a unique approach to the problem.

“We don’t think of it as DNA, we view it as a bunch of atoms and electrons that behave in ways we can predict and manipulate,” said Di Ventra.

Media Contacts: Sherry Seethaler, (858) 534-4656
Comment: Massimiliano (Max) Di Ventra, (858) 822-6447

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>