Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden structure revealed in characteristics of transistor laser

10.04.2006


The transistor laser, invented by scientists at the University of Illinois at Urbana-Champaign, has been full of surprises. Researchers recently coaxed the device to reveal fundamental properties of the transistor, and of the transistor laser, moving it a step closer to commercialization.



As reported in the April 3 issue of the journal Applied Physics Letters, Nick Holonyak Jr., Milton Feng, and colleagues at the U. of I. explored the current-voltage relationship in a transistor laser. During stimulated emission, the laser light allowed the scientists to see into the device and study its elusive electronic structure.

"We were able to look at the transistor’s operating characteristics, look inside of the transistor, and see features and behaviors that we couldn’t see before," said Holonyak, a John Bardeen Chair Professor of Electrical and Computer Engineering and Physics. "The current-voltage characteristics were clearly distorted under stimulated recombination, compared to ordinary 58-year-old-transistor spontaneous recombination."


The transistor laser employs a quantum well and a resonator in the base to control electron-hole recombination and electrical gain. By blocking the laser resonator with white paste, the researchers converted the device into an ordinary transistor. Because the process is reversible, the researchers could compare collector characteristics when the device was functioning as a normal transistor and when it was functioning as a transistor laser, something that was never before possible.

"We found significant structure in the current-voltage characteristics of the transistor laser, that can be mapped in detail and related to the quantum-well carrier recombination," said Holonyak, who also is a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition.

"We were also able to correlate optical measurements with electrical measurements of quantum-well properties," Holonyak said.

The transistor laser combines the functionality of both a transistor and a laser by converting electrical input signals into two output signals, one electrical and one optical. Photons for the optical signal are generated when electrons and holes recombine in the base, an intrinsic feature of transistors.

"When we weaken the strength of the photon generation process, we change the nature of the process connecting the electron and the hole, and we change their behavior in an electrical sense," Holonyak said. "When we let the device operate as a transistor laser, however, the photons streaming out let us look inside and see more of the mechanics that goes on. We see features of the transistor never revealed before."

The change in gain and laser wavelength corresponding to stimulated recombination on quantum-well transitions can be compared to operation in spontaneous recombination and used with conventional transistor charge analysis to determine some of the dynamic properties of the transistor laser.

"This transistor laser is letting us see the properties and mechanics of how fast the electrons and holes generate photons, and we can turn laser photon generation on and off," said Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. "This allows us to alter the processes and see how the speed and time factors are changing. This is the first time we could directly determine the lifetime, the speed of stimulated recombination. The transistor has now made certain laser measurements easier or more convenient."

This capability opens the door to developing transistor lasers that operate at different speeds for a variety of commercial applications, Feng said.

"Until now, we had missed something important and fundamental about the boundaries of what the photon can do, of what the electron and hole can do, and of what the semiconductor can do," Holonyak said. "We found those boundaries to be much further out than we had ever imagined, which now makes our prognosis for the transistor laser much more optimistic."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>