Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden structure revealed in characteristics of transistor laser

10.04.2006


The transistor laser, invented by scientists at the University of Illinois at Urbana-Champaign, has been full of surprises. Researchers recently coaxed the device to reveal fundamental properties of the transistor, and of the transistor laser, moving it a step closer to commercialization.



As reported in the April 3 issue of the journal Applied Physics Letters, Nick Holonyak Jr., Milton Feng, and colleagues at the U. of I. explored the current-voltage relationship in a transistor laser. During stimulated emission, the laser light allowed the scientists to see into the device and study its elusive electronic structure.

"We were able to look at the transistor’s operating characteristics, look inside of the transistor, and see features and behaviors that we couldn’t see before," said Holonyak, a John Bardeen Chair Professor of Electrical and Computer Engineering and Physics. "The current-voltage characteristics were clearly distorted under stimulated recombination, compared to ordinary 58-year-old-transistor spontaneous recombination."


The transistor laser employs a quantum well and a resonator in the base to control electron-hole recombination and electrical gain. By blocking the laser resonator with white paste, the researchers converted the device into an ordinary transistor. Because the process is reversible, the researchers could compare collector characteristics when the device was functioning as a normal transistor and when it was functioning as a transistor laser, something that was never before possible.

"We found significant structure in the current-voltage characteristics of the transistor laser, that can be mapped in detail and related to the quantum-well carrier recombination," said Holonyak, who also is a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition.

"We were also able to correlate optical measurements with electrical measurements of quantum-well properties," Holonyak said.

The transistor laser combines the functionality of both a transistor and a laser by converting electrical input signals into two output signals, one electrical and one optical. Photons for the optical signal are generated when electrons and holes recombine in the base, an intrinsic feature of transistors.

"When we weaken the strength of the photon generation process, we change the nature of the process connecting the electron and the hole, and we change their behavior in an electrical sense," Holonyak said. "When we let the device operate as a transistor laser, however, the photons streaming out let us look inside and see more of the mechanics that goes on. We see features of the transistor never revealed before."

The change in gain and laser wavelength corresponding to stimulated recombination on quantum-well transitions can be compared to operation in spontaneous recombination and used with conventional transistor charge analysis to determine some of the dynamic properties of the transistor laser.

"This transistor laser is letting us see the properties and mechanics of how fast the electrons and holes generate photons, and we can turn laser photon generation on and off," said Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. "This allows us to alter the processes and see how the speed and time factors are changing. This is the first time we could directly determine the lifetime, the speed of stimulated recombination. The transistor has now made certain laser measurements easier or more convenient."

This capability opens the door to developing transistor lasers that operate at different speeds for a variety of commercial applications, Feng said.

"Until now, we had missed something important and fundamental about the boundaries of what the photon can do, of what the electron and hole can do, and of what the semiconductor can do," Holonyak said. "We found those boundaries to be much further out than we had ever imagined, which now makes our prognosis for the transistor laser much more optimistic."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>