Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star exploding inside another star sheds light on super stellar explosions

10.04.2006


An international team of astronomers today is reporting on a discovery of a star exploding inside another star. The discovery is helping astronomers learn more about the structure of a red giant star, how shock waves move through a star and revealing how one type of binary star system goes through the end stages of its life, the astronomers report.



Speaking at the National Astronomy Meeting in Leicester, U.K., the international team of 14 astronomers described what they saw as they monitored the explosion of RS Ophiuchi, a recurrent nova that lights up in the sky roughly every 20 years. RS Oph, as it is called, normally a very dim object in the sky was found to be visible to the unaided eye on Feb. 12, 2006 by Japanese amateur astronomers.

It was the fifth time in the last 108 years RS Oph exploded, and the first time it was viewed in unprecedented detail by an armada of space- and ground-based telescopes, said Sumner Starrfield, an ASU Regents professor of astronomy and a member of the international team monitoring the star system. Starrfield leads the U.S. portion of the effort. Among the telescopes and detectors trained on RS Oph were x-ray telescopes, an infrared telescope and a radio telescope.


In addition to Starrfield, the team monitoring RS Oph includes Michael Bode of Liverpool John Moores University, U.K.; Tim O’Brien, Jodrell Bank Observatory, University of Manchester, U.K.; Julian Osborne and Kim Page, University of Leicester, U.K.; Stewart Eyres, University of Central Lancaster, U.K.; and Nye Evans, University of Keele, U.K.

While RS Oph is a well-known and well-documented star system the fact that the astronomers were able to train their instruments and telescopes on the object early in the explosion process is shedding new light on it, Starrfield said.

"We were floored to see how bright this star was in x rays when we first observed it, and then it changed every day we pointed at it with our telescopes," Starrfield said. "We estimate the gas exploded off the white dwarf to be about 100 million degrees, about six times hotter than the gas at the center of our Sun. We are seeing about an Earth mass of material expand at more than 10 million kilometers/hour. The expanding gas from the explosion is now larger in size than our own solar system."

RS Oph is more than 5,000 light years away from Earth in the constellation Ophiuchi. A binary star system, it consists of a white dwarf star (the super-dense core of a star, about the size of the Earth, that has reached the end of its main hydrogen-burning phase of evolution and has shed its outer layers) in close orbit with a much larger red giant star (which is one step behind it in terms of its life-cycle).

The two stars are so close together that hydrogen-rich gas from the outer layers of the red giant is continuously pulled onto the dwarf by its high gravity. After about 20 years of this, enough gas has been accreted that a runaway thermonuclear explosion occurs on the white dwarf’s surface. The luminous energy increases in less than a day to more than 100,000 times that of the Sun, and the accreted gas (several times the mass of the Earth) is ejected into space.

"This explosion is similar to that of a terrestrial hydrogen bomb," says Starrfield. "RS Oph can be thought of as one of the largest and most powerful hydrogen bombs in the universe."

To get explosions like this five times a century means that the white dwarf must be near a maximum mass without collapsing to become an even denser neutron star or black hole. What is also unusual in RS Oph is that because the red giant is losing enormous amounts of gas in a wind that envelops the whole system, the explosion on the white dwarf occurs ’inside’ its companion’s extended atmosphere and the very high speed ejected gas then slams into it.

"We are learning about the chemical composition of the red giant and how fast it is losing matter itself," Starrfield explained. "With this information we can predict how much longer the red giant will live before becoming a white dwarf."

If the red giant lives long enough, then the white dwarf could explode as a white dwarf supernova, which is the "type of supernova that astronomers use to study the evolution and fate of the universe itself," Starrfield said. "Studies of RS Oph can shed light on these tremendous explosions that can be seen across the universe."

O’Brien, of Jodrell Bank Observatory, said that by looking at this explosion with advanced technology telescopes, the astronomers are recording in unprecedented detail the entire explosion process.

"Both radio and x-ray observations from the last outburst gave us tantalizing glimpses of what was happening as the outburst evolved," O’Brien said. "This time we have developed much more advanced computer models and more sensitive telescopes. We have also opened the x-ray part of the spectrum to highly detailed studies. The combination of the two (instruments and models) will undoubtedly lead to a greater understanding of the circumstances and consequences of the explosion."

Michael Bode, leader of the UK team and the person who presented at the National Astronomy Meeting, added that RS Oph is a rare combination of a known star system with a predictable pattern of exploding every 20 years.

"We have a unique opportunity [through the study of RS Oph] to better understand such things as run away thermonuclear explosions and the end points of the evolution of stars," Bode said.

Skip Derra | EurekAlert!
Further information:
http://www.aus.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>