Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gemini/HST survey reveals building-block process in evolution of massive galaxy clusters

05.04.2006


A study of the Universe’s most massive galaxy clusters has shown that mergers play a vital role in their evolution.

Astronomers at Oxford University and the Gemini Observatory used a combination of data from the twin Gemini Telescopes, located in Hawaii and Chile, and the Hubble Space Telescope (HST) to study populations of stars in the Universe’s most massive galaxy clusters over a range of epochs – the earliest being half the age of the Universe. The HST images were used to map the light distribution of the galaxies in the cluster. Data from the Gemini Multi-Object Spectrograph allowed the team to analyse the light from galaxies to determine their masses, ages and chemical compositions.

“We still don’t have a clear picture of how galaxies develop over the history of the Universe. The strength of this study is that we are able to look at galaxy clusters over a range of epochs,” said Dr Jordi Barr of Oxford University, who is presenting some of the first results of the Gemini/HST Galaxy Cluster Project at the RAS National Astronomy Meeting on 5th April.



Galaxy clusters contain the most massive galaxies in the Universe. Until recently, astronomers believed that all galaxies in the centres of clusters formed rapidly and then aged without any further changes to their structure in a process known as “Passive Evolution”. Results from the Gemini/HST Galaxy Cluster Project now show that this cannot be the case.

Dr Barr explained, “When we’re looking at the most distant galaxy clusters, we are looking back in time to clusters that are in early stages of their formation. The young galaxies in distant clusters appear to be very different from those in the mature clusters that we see in the local Universe. We found the earliest galaxy clusters have a huge variation in the abundances of elements such as oxygen and magnesium, whereas the chemistry of galaxies in the sample of closer clusters appears to be much more homogenous. This difference in chemistry proves that the clusters must actively change over time. If the galaxies in the old clusters have acquired a complete ‘set’ of elements, it’s most likely that they have formed from the mergers of several young galaxies”.

The group found that the star-formation in galaxies is dependent on mass and that in lower mass galaxies star-formation continues for longer. The most massive galaxies in clusters appear to have formed all their stars by the time the universe is just over a billion years old, whereas the lower mass galaxies finish forming their stars some 4 billion years later.

“We see the effects of star-formation in low mass galaxies but are unsure about why it’s happening. It’s possible that star-formation can be shut down very rapidly in dense environments and that the lower mass galaxies are recent arrivals that are forming stars over a longer period outside the cluster, then falling in. But we are still speculating...” said Dr Barr

The group’s observations of merging galaxy clusters showed that a large proportion of the galaxies in those clusters have undergone recent bursts of star formation. This indicates that star formation may be triggered if galaxies are thrown, during the course of a merger, into contact with the gaseous medium pervading the cluster.

Future observations are planned at X-ray wavelengths to study the interactions between galaxies and the distribution and temperature of the surrounding gas.

Anita Heward | alfa
Further information:
http://hubblesite.org/gallery/album/entire_collection/pr2003001a/
http://www-astro.physics.ox.ac.uk/~jmb/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>