Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubble, bubble: Searching through the rubble of supernova remnants

05.04.2006


A study of supernova remnants – material blown out into space during death throes of giant stars – has shown that a bubble of gas enveloping our Solar System is being shoved backwards by the debris of another, more recent, supernova.



Over the last few million years, several stars have exploded within the Milky Way and they have left behind bubbles of expanding, hot gas that radiate low-energy X-rays. The Solar System sits within one of these shells, known as the “Local Hot Bubble”. A study using data from the XMM-Newton Space Telescope has shown that the “Loop 1 Superbubble”, the remnants of some more recent supernova explosions, is expanding faster than the Local Hot Bubble and is compressing an area of cool dense gas, known as the Wall, that lies between the two shells. Although astronomers have known for some time that the Local Hot Bubble has an hourglass shape, pressure and density measurements from this new study provide evidence that Loop 1’s compression of the Wall is causing the hourglass’s “waist”.

“The X-ray radiation from the bubbles is very faint. In order to see them, we’ve had to remove all the light from stars, nebulae and cosmic rays the images, leaving only the weak X-ray signal. It’s the astronomical equivalent of looking at an aquarium, ignoring the fish and looking only at the water,” said Michelle Supper, who is presenting the results at the RAS National Astronomy Meeting in Leicester on 5th April.


“We’ve taken long-exposure images of ten small areas of sky in the direction of the Loop 1 Superbubble, then removed all the bright objects and studied what’s left. Each structure emits a unique X-ray signal, like a fingerprint, that reflects its temperature and chemical composition. This means that, when we come to analyse the images, we can tell which bits of radiation originated from Loop 1, the Wall or the Local Hot Bubble,” Supper explained.

Together with Dr Richard Willingale, also from the University of Leicester, Supper developed mathematical models to represent each of the structures and then produced a geometrical model from which she could work out the distances to the structure boundaries and the pressure and density of the interstellar plasma within the structures.

Loop 1 is thought to be expanding because it is being inflated by winds originating from a group of stars known as the Scorpius-Centaurus Association. Supper’s measurements of physical properties of the Wall showed that its density increases fourfold, reaching a peak near the most indented region of the Local Hot Bubble. The pressures also peak around this point, indicating that the Wall is pushing into the bubble at in this region. The chemical analysis showed that the highest concentrations of gases are found at the centre of the Loop 1 Superbubble and levels decrease dramatically in the expanding shell of the bubble.

“Not many astronomers are looking at these structures at present but this study has shown there are many more mysteries to solve!” adds Supper. “We found that X-ray emissions in an area near the galactic plane are much higher in energy than expected but we don’t know yet whether we’ve discovered a new X-ray source or whether its an extension of the very high energy radiation coming from the centre of the galaxy. We hope that this study will also give us an insight into the distribution of the Galactic Halo, a mysterious X-ray signal that can be detected faintly above and below the disc of the Milky Way.

Anita Heward | alfa
Further information:
http://www.ras.org.uk/index.php?option=com_content&task=view&id=970

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>