Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubble, bubble: Searching through the rubble of supernova remnants

05.04.2006


A study of supernova remnants – material blown out into space during death throes of giant stars – has shown that a bubble of gas enveloping our Solar System is being shoved backwards by the debris of another, more recent, supernova.



Over the last few million years, several stars have exploded within the Milky Way and they have left behind bubbles of expanding, hot gas that radiate low-energy X-rays. The Solar System sits within one of these shells, known as the “Local Hot Bubble”. A study using data from the XMM-Newton Space Telescope has shown that the “Loop 1 Superbubble”, the remnants of some more recent supernova explosions, is expanding faster than the Local Hot Bubble and is compressing an area of cool dense gas, known as the Wall, that lies between the two shells. Although astronomers have known for some time that the Local Hot Bubble has an hourglass shape, pressure and density measurements from this new study provide evidence that Loop 1’s compression of the Wall is causing the hourglass’s “waist”.

“The X-ray radiation from the bubbles is very faint. In order to see them, we’ve had to remove all the light from stars, nebulae and cosmic rays the images, leaving only the weak X-ray signal. It’s the astronomical equivalent of looking at an aquarium, ignoring the fish and looking only at the water,” said Michelle Supper, who is presenting the results at the RAS National Astronomy Meeting in Leicester on 5th April.


“We’ve taken long-exposure images of ten small areas of sky in the direction of the Loop 1 Superbubble, then removed all the bright objects and studied what’s left. Each structure emits a unique X-ray signal, like a fingerprint, that reflects its temperature and chemical composition. This means that, when we come to analyse the images, we can tell which bits of radiation originated from Loop 1, the Wall or the Local Hot Bubble,” Supper explained.

Together with Dr Richard Willingale, also from the University of Leicester, Supper developed mathematical models to represent each of the structures and then produced a geometrical model from which she could work out the distances to the structure boundaries and the pressure and density of the interstellar plasma within the structures.

Loop 1 is thought to be expanding because it is being inflated by winds originating from a group of stars known as the Scorpius-Centaurus Association. Supper’s measurements of physical properties of the Wall showed that its density increases fourfold, reaching a peak near the most indented region of the Local Hot Bubble. The pressures also peak around this point, indicating that the Wall is pushing into the bubble at in this region. The chemical analysis showed that the highest concentrations of gases are found at the centre of the Loop 1 Superbubble and levels decrease dramatically in the expanding shell of the bubble.

“Not many astronomers are looking at these structures at present but this study has shown there are many more mysteries to solve!” adds Supper. “We found that X-ray emissions in an area near the galactic plane are much higher in energy than expected but we don’t know yet whether we’ve discovered a new X-ray source or whether its an extension of the very high energy radiation coming from the centre of the galaxy. We hope that this study will also give us an insight into the distribution of the Galactic Halo, a mysterious X-ray signal that can be detected faintly above and below the disc of the Milky Way.

Anita Heward | alfa
Further information:
http://www.ras.org.uk/index.php?option=com_content&task=view&id=970

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>