Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bubble, bubble: Searching through the rubble of supernova remnants


A study of supernova remnants – material blown out into space during death throes of giant stars – has shown that a bubble of gas enveloping our Solar System is being shoved backwards by the debris of another, more recent, supernova.

Over the last few million years, several stars have exploded within the Milky Way and they have left behind bubbles of expanding, hot gas that radiate low-energy X-rays. The Solar System sits within one of these shells, known as the “Local Hot Bubble”. A study using data from the XMM-Newton Space Telescope has shown that the “Loop 1 Superbubble”, the remnants of some more recent supernova explosions, is expanding faster than the Local Hot Bubble and is compressing an area of cool dense gas, known as the Wall, that lies between the two shells. Although astronomers have known for some time that the Local Hot Bubble has an hourglass shape, pressure and density measurements from this new study provide evidence that Loop 1’s compression of the Wall is causing the hourglass’s “waist”.

“The X-ray radiation from the bubbles is very faint. In order to see them, we’ve had to remove all the light from stars, nebulae and cosmic rays the images, leaving only the weak X-ray signal. It’s the astronomical equivalent of looking at an aquarium, ignoring the fish and looking only at the water,” said Michelle Supper, who is presenting the results at the RAS National Astronomy Meeting in Leicester on 5th April.

“We’ve taken long-exposure images of ten small areas of sky in the direction of the Loop 1 Superbubble, then removed all the bright objects and studied what’s left. Each structure emits a unique X-ray signal, like a fingerprint, that reflects its temperature and chemical composition. This means that, when we come to analyse the images, we can tell which bits of radiation originated from Loop 1, the Wall or the Local Hot Bubble,” Supper explained.

Together with Dr Richard Willingale, also from the University of Leicester, Supper developed mathematical models to represent each of the structures and then produced a geometrical model from which she could work out the distances to the structure boundaries and the pressure and density of the interstellar plasma within the structures.

Loop 1 is thought to be expanding because it is being inflated by winds originating from a group of stars known as the Scorpius-Centaurus Association. Supper’s measurements of physical properties of the Wall showed that its density increases fourfold, reaching a peak near the most indented region of the Local Hot Bubble. The pressures also peak around this point, indicating that the Wall is pushing into the bubble at in this region. The chemical analysis showed that the highest concentrations of gases are found at the centre of the Loop 1 Superbubble and levels decrease dramatically in the expanding shell of the bubble.

“Not many astronomers are looking at these structures at present but this study has shown there are many more mysteries to solve!” adds Supper. “We found that X-ray emissions in an area near the galactic plane are much higher in energy than expected but we don’t know yet whether we’ve discovered a new X-ray source or whether its an extension of the very high energy radiation coming from the centre of the galaxy. We hope that this study will also give us an insight into the distribution of the Galactic Halo, a mysterious X-ray signal that can be detected faintly above and below the disc of the Milky Way.

Anita Heward | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>