Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swift Observes An Unusual Bang In The Far Universe

05.04.2006


Almost 40 years have passed since top secret nuclear weapon warning satellites accidentally discovered bursts of high energy gamma rays coming from space. Although many thousands of gamma ray bursts (GRBs) have since been detected, the origin and nature of these bursts is still not well understood.



One example of an unusual gamma ray burst occurred on 1 August 2005, when instruments on board the NASA-UK-Italy Swift spacecraft detected a bizarre GRB, which displayed unprecedented behaviour. Results based on the Swift data are being presented today (Wednesday) at the RAS National Astronomy Meeting in Leicester by Massimiliano De Pasquale from Mullard Space Laboratory-UCL.

Gamma ray bursts take the form of a brilliant burst of radiation, followed by a slowly fading afterglow. This shallow decay in the X-ray and optical light curve usually lasts for several days after the high energy explosion.


Swift data have shown that, whatever the ‘central engine’ that powers the GRB may be, it does not switch off after a few seconds, but often produces fast flares of radiation and injects energy into the outflow for hours.

Scientists believe that most GRBs are thought to be the result of a black hole swallowing a large star. This process might take long enough to explain both the prompt emission of X-rays and gamma rays, the late flares and energy injection.

The remaining matter is launched outwards at a huge velocity, but the interstellar medium around the burst acts like a “brake” to this outflow, being heated in the process and producing the afterglow emission.

In the case of the August 2005 gamma ray burst, known as GRB050801 after its date of detection, there was a bright afterglow with a steady emission both in X-ray and optical wavelengths, without any initial, brilliant flare. This behaviour lasted for only 250 seconds after the end of the prompt emission, before the afterglow began the typical decline in brightness. This behaviour has never been observed before.

The flat emission both in X-ray and optical wavelengths gives some hints about the ‘central engine’ of this GRB.

“This feature might be explained if we assume that, rather than a black hole, the core of the star has shrunk its mass and its magnetic field into an object known as a magnetar,” said Massimiliano De Pasquale.

A magnetar is a form of neutron star, the remains of a collapsed star that was originally about 10 times more massive than the Sun. This extremely dense object typically has a radius of only 10 km but the same mass of the Sun.

Magnetars are thousands of times more magnetic than ordinary neutron stars, with a magnetic field 1,000 million million times stronger than the Earth’s. Only a few of these exotic objects are known.

“Such an object initially rotates very quickly, typically hundreds of times every second, but it slows down by irradiating its energy at the magnetic poles, like a lighthouse,” said De Pasquale. “This would keep the afterglow emission steady for a time scale similar to that observed for GRB 050801.

The joint analysis of data from the XRT and UVOT instruments on Swift has also allowed the team to determine the distance of GRB050801, which was previously unknown, by measuring the amount of light absorbed during its intergalactic travel en route to the Earth.

It turns out that the burst took place 9 billion light-years away, which means that the gamma rays, X-rays and light from the gamma ray burst were created and began their journey across the universe 4,500 million years before the Earth was born.

“The explosion produced the same amount of energy as the Sun produces during its entire lifetime of 10 billion years,” said Massimiliano De Pasquale.

Massimiliano De Pasquale | alfa
Further information:
http://www.nam2006.le.ac.uk/index.shtml
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>