Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lobster telescope has an eye for X-rays


UK astronomers have been at the forefront of designing a revolutionary new X-ray telescope that is based on the eyes of a lobster. By replicating the crustacean’s ability to observe objects all around it without turning its head, scientists are confident that the Lobster instrument will enable a major breakthrough in X-ray astronomy.

The sky viewed at X-ray wavelengths is a violent and unpredictable place. Many sources brighten without warning, then vanish just as suddenly. Others vary cyclically over a period that can range from minutes to years.

The ideal X-ray telescope, therefore, would observe “all the sky, all of the time” – an ideal which might seem unattainable, but which is approached by the Lobster concept, to be described by Dr. Nigel Bannister (University of Leicester) at the RAS National Astronomy Meeting, University of Leicester, on 4 April.

“The great advantage of the Lobster design is an almost unlimited field of view,” said Dr. Bannister. “This makes it ideal for use as an all-sky X-ray monitor.”

In the 1970s, lobsters and some other crustacea were found to view the world through remarkable eyes which focus light over a very wide field of view by means of reflection, rather than by refraction or bending of light, as in the human eye.

The lobster eye – essentially an array of tube-like channels with a square cross-section – was proposed as the basis of an X-ray “all-sky monitor” by Roger Angel of the University of Arizona in 1977. However, it has taken almost 30 years – and nearly 15 years from the first successful X-ray measurements with such structures in 1992 - to perfect the optic technology.

Only now is it possible to consider the space missions described by Nigel Bannister as practical propositions, with the Lobster All-Sky X-ray Monitor successfully completing a detailed European Space Agency (ESA) Phase-A study in 2005.

“The studies of Lobster conducted with ESA since 2001 suggest that the instrument will have an impact on almost every area of astrophysics,” said Professor George Fraser, Director of the University of Leicester Space Research Centre and leader of the international team which has been studying Lobster.

“Originally, these studies concentrated on mounting the Lobster telescope modules on the International Space Station (ISS), but more recently we’ve been looking at a free-flying satellite platform provided by the Russians.”

Fraser points out that it has not been easy as a British scientist leading a study for an ISS attached payload, since the UK does not contribute to the ISS programme. There has also been some scepticism regarding a collaboration with Russia since the failure of the Russian Spectrum X - Gamma project in the 1980s and 1990s.

“Nevertheless, I am confident that the Lobster concept will eventually make its impact on astrophysics,” he said.

“The scientific impact of Lobster will span all of astronomy - from studies of the X-ray emission of comets to stars and quasars, from regular X-ray binaries to the catastrophic events of supernovæ and the enigmatic gamma-ray bursts.

“Through frequent re-observation of each point in the sky during the lifetime of the mission, Lobster offers the opportunity to perform deep, sensitive surveys of both galactic and extra-galactic sources.

“This will lead to the collation of a “Lobster All-Sky Catalogue” containing hundreds of thousands of sources, including a significant population of objects for which photometry on approximately 1 day timescales will be available.

“Such a rich catalogue of sources offers an unprecedented opportunity to study the large-scale distribution of matter in the Universe, probing possible links between supercluster filamentary structures and the purported existence of dark matter in the cosmos.”

Professor George Fraser | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>