Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slew Survey Reveals Secrets Of X-Ray Sky

04.04.2006


The European Space Agency’s XMM-Newton X-ray observatory has already been a spectacular success in many areas of astronomy - detecting distant clusters of galaxies, the faint afterglow of enigmatic gamma ray bursts and the effects of the collision of the Deep Impact probe with comet Tempel-1.



Now an innovative new approach analyses X-rays detected during the times that the satellite manoeuvres between targets - originally considered to be unusable periods - to reveal some 4,000 intensely brilliant X-ray stars and galaxies.

An initial study has identified these with a host of highly energetic celestial phenomena. These include close binary stars, where matter is being pulled away from one star to explode onto the surface of the companion; and distant quasars, super-luminous galaxies up to 10 billion light years from Earth, which are being slowly consumed by a voracious central black hole.


Preliminary results from this study, known as the XMM-Newton Slew Survey, will be presented today (Tuesday) at the RAS National Astronomy Meeting in Leicester by Dr. Andy Read of Leicester University.

XMM-Newton, with the huge collecting area of its many nested mirrors and the excellent efficiency of its EPIC X-ray camera/detector, is the most sensitive X-ray observatory ever flown. As a result, it is able to record unrivalled numbers of X-rays from the cosmos.

Since its launch in December 1999, XMM-Newton has observed thousands of objects, gazing at a particular X-ray source for hours, before turning or ‘slewing’ away at a great speed to observe its next target. Since September 2001, the XMM-Newton ’shutter’ has been open during these slews, and this has yielded hundreds of extremely long snapshot strips of the X-ray sky.

Though the slews are so quick that XMM-Newton passes over each point in the sky in only 10 seconds (compared to a normal ‘pointed’ observation of a few hours), this 10 second exposure is enough time for XMM-Newton to detect thousands of sources in the sky.

“The area of the sky that is covered is enormous,” said Andy Read. “Over a quarter of the entire sky has already been covered in the 400 or so slews so far performed, and many more slews are continually taking place.

“The entire sky will be covered - even at the present extremely slow rate - over the lifetime of the XMM-Newton mission.

“As such, this XMM-Newton slew survey, even coming as it does, for ‘free’, rivals the best of all previous dedicated all-sky X-ray surveys. For detecting high-energy X-rays, it is certainly the best that there has ever been.

“A wonderful variety of X-ray sources has been seen in the Slew Survey, including black holes, quasars, active galaxies and stars - many of which have been observed for the first time.”

Only a survey such as this, covering such a large area of the sky, is able to observe the rarest of events. The team involved in the survey has, for example, seen a number of X-ray sources undergoing extraordinary changes in brightness, events that are thought to be due to stars being captured whole by massive black holes.

The best example is an otherwise normal galaxy, about 40 million light years away, which has been seen to increase remarkably in X-ray brightness (possibly linked to matter being drawn into a supermassive central black hole).

"This galaxy is far, far brighter than it was when previously observed with older X-ray satellites," said Dr. Read.

Furthermore, the great sensitivity and low ‘noise’ of the EPIC CCD camera is especially suited to detect emission from extended sources that cover a large area of space, and many extremely interesting supernova remnants and massive clusters of galaxies have been observed.

“Multi-slews that are criss-crossing large areas of the sky are now giving us new, large-scale views of the biggest X-ray objects in the sky,” said Andy Read.

Dr. Andy Read | alfa
Further information:
http://www.nam2006.le.ac.uk/index.shtml

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>