Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar wind whips up auroral storms on Jupiter and Saturn

04.04.2006


Studies of Jupiter’s auroras by scientists from the University of Leicester have challenged current theories about the processes controlling the biggest light-shows in the Solar System.

The scientists compared a series of ultraviolet images of Jupiter’s auroras taken by the Hubble Space Telescope with simultaneous measurements taken by Cassini showing conditions in the solar wind as the spacecraft flew past the giant planet in December 2000 - January 2001. They found that there was a strong correlation between the strength of the solar wind and the behaviour of the aurora that occurred towards the planet’s poles. Until now, scientists had believed that Jovian auroras were caused by the planet’s rapid spin and a stream of material emitted from the volcanic moon Io at the rate of one tonne per second.

“The argument is certainly not cut and dried”, said Dr Jonathan Nichols, who is presenting the results today at the Royal Astronomical Society’s National Astronomy Meeting. “Previous work by our group has shown that Jupiter’s main auroral oval is not caused by the same type of processes that cause the Northern Lights on Earth. However, this new study shows that the auroras located polewards of the main ovals are directly linked to the strength with which the solar wind is blowing, which means that Earth-like processes are causing these polar auroras. Surprisingly, we’ve also found that the main oval also shows a direct correlation to solar wind strength, which is completely the opposite result to the one we were expecting from our predictions.”



The results indicate that substantial energy is transferred from the solar wind to the planet and this may account for the puzzle as to why Jupiter is significantly warmer than it ’should’ be. The new findings may affect theories surrounding other aspects of the Jovian magnetosphere, such as the mechanism by which the plasma originating from Io is lost from the system and determining the length of Jupiter’s huge comet-like magnetic tail.

In the same session, Sarah Badman will be presenting results of a study of Saturn’s auroras carried out over three weeks in January 2004. This study also combined images taken by the Hubble Space Telescope with measurements of the solar wind recorded by Cassini as it approached the ringed planet. Miss Badman collated all available images of Saturn’s aurora and determined, for the first time, the most common shape and position of the aurora, as well as the occurrence of more unusual features. Her findings corroborate the theory that Saturn’s auroras are caused by the explosive release of solar wind energy that is built up and stored in the planet’s magnetic field.

Anita Heward | alfa
Further information:
http://www.ras.org.uk
http://www.ion.le.ac.uk/~jdn/hst/index.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>