Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar wind whips up auroral storms on Jupiter and Saturn

04.04.2006


Studies of Jupiter’s auroras by scientists from the University of Leicester have challenged current theories about the processes controlling the biggest light-shows in the Solar System.

The scientists compared a series of ultraviolet images of Jupiter’s auroras taken by the Hubble Space Telescope with simultaneous measurements taken by Cassini showing conditions in the solar wind as the spacecraft flew past the giant planet in December 2000 - January 2001. They found that there was a strong correlation between the strength of the solar wind and the behaviour of the aurora that occurred towards the planet’s poles. Until now, scientists had believed that Jovian auroras were caused by the planet’s rapid spin and a stream of material emitted from the volcanic moon Io at the rate of one tonne per second.

“The argument is certainly not cut and dried”, said Dr Jonathan Nichols, who is presenting the results today at the Royal Astronomical Society’s National Astronomy Meeting. “Previous work by our group has shown that Jupiter’s main auroral oval is not caused by the same type of processes that cause the Northern Lights on Earth. However, this new study shows that the auroras located polewards of the main ovals are directly linked to the strength with which the solar wind is blowing, which means that Earth-like processes are causing these polar auroras. Surprisingly, we’ve also found that the main oval also shows a direct correlation to solar wind strength, which is completely the opposite result to the one we were expecting from our predictions.”



The results indicate that substantial energy is transferred from the solar wind to the planet and this may account for the puzzle as to why Jupiter is significantly warmer than it ’should’ be. The new findings may affect theories surrounding other aspects of the Jovian magnetosphere, such as the mechanism by which the plasma originating from Io is lost from the system and determining the length of Jupiter’s huge comet-like magnetic tail.

In the same session, Sarah Badman will be presenting results of a study of Saturn’s auroras carried out over three weeks in January 2004. This study also combined images taken by the Hubble Space Telescope with measurements of the solar wind recorded by Cassini as it approached the ringed planet. Miss Badman collated all available images of Saturn’s aurora and determined, for the first time, the most common shape and position of the aurora, as well as the occurrence of more unusual features. Her findings corroborate the theory that Saturn’s auroras are caused by the explosive release of solar wind energy that is built up and stored in the planet’s magnetic field.

Anita Heward | alfa
Further information:
http://www.ras.org.uk
http://www.ion.le.ac.uk/~jdn/hst/index.html

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>