Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’March Madness’ effects observed in ultracold gases

03.04.2006


The image above represents the interference of wave patterns created by simulated atoms that have been "trapped" by intersecting laser beams. The complex shape of peaks and valleys is an example of a natural fractal pattern, a pattern that continues to reveal new details no matter how many times it is magnified. Credit: A.M. Rey/Harvard University


Physicists at Harvard University, George Mason University and the National Institute of Standards and Technology (NIST) have discovered new quantum effects in ultracold gases that may lead to improved understanding of electrical conductivity in metals.

In work presented at the March meeting of the American Physical Society* in Baltimore, Md., the researchers calculated the properties of an "artificial crystal" of ultracold atoms in a lattice formed by intersecting laser beams. The wave patterns in the laser light form the equivalent of row upon row of stadium seating for the atoms, an appropriate analogy given that the work was debuted during the height of college basketball’s "March Madness" tournament.

In metals like copper, two mutually exclusive types of effects tend to slow down the flow of electrons and reduce electrical conductivity, namely disorder in the crystal structure or blocking of electrons by other electrons that are already occupying a given space.



"In March Madness terms," says NIST physicist Charles Clark, "fans who arrive early to an empty stadium can move relatively quickly down any row unless they encounter a railing, wall or other barrier (crystal disorder) but once the game begins a fan’s movements are constrained along rows by other fans already occupying seats (electron blocking)." Even though Phillip Anderson and Sir Neville Mott won the Nobel Prize in 1977 for explaining these phenomena in metals, it has been difficult to observe the effects in real materials.

By using equations dictated by the laws of quantum mechanics (the rules obeyed by nature’s smallest particles), the researchers were able to simulate gases in optical lattices as models for materials that haven’t been created yet. They found that under certain conditions electron blocking occurs even when the lattice would ordinarily be a good conductor. They also found that interference effects between the wave properties of ultracold atoms in the lattice form natural fractal patterns--that is, no matter how many times the pattern is magnified, new patterns of detail are revealed.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>