Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini spacecraft finds evidence of football-field sized moonlets in Saturn’s A ring


New observations of propeller-shaped disturbances in Saturn’s A ring indicate the presence of four small, embedded moons -- and most likely millions more, Cornell University astronomers report.

The left image shows the B ring, Cassini Division, A ring and F ring, with the location of the propeller-shaped disturbances indicated. The center image is a closer view of the A ring, showing the radial locations where propeller features were spotted. In the right-hand image, the propellers appear as double dashes in the two close-up images. The unseen moonlets, each roughly the size of a football field, lie in the center of each structure. (The horizontal lines in the image represent electronic noise and do not correspond to ring features.)

This is the first evidence of the existence of moonlets bridging the gap in size between the larger ring moons Pan and Daphnis (several miles each in diameter) and the much smaller ice particles that comprise the bulk of the rings. The discovery could lead to a better understanding of the origin and formation of Saturn’s rings and the solar system as a whole.

Matthew Tiscareno, a Cornell research associate, is lead author of a paper describing the discovery in the March 30 issue of the journal Nature.

The four disturbances, which appear as pairs of slightly offset bright horizontal streaks in an otherwise bland region of the ring, were captured in two images taken in 2004 by NASA’s Cassini spacecraft. Astronomers say the streaks are indicators of orbiting moons about 100 meters (328 feet) in diameter: about the length of a football field, but still too small for even Cassini’s highly sensitive Imaging Science Subsystem (ISS) to see directly, but large enough to exert an observable gravitational pull on the particles around them.

"The discovery of these intermediate-sized particles tells us that Pan and Daphnis are probably just the largest members of the ring population, rather than interlopers from somewhere else," said Tiscareno.

A continuum of particle sizes lends strong support to the theory that Saturn’s rings were formed when another object fragmented close to the planet, breaking into pieces which were then captured by Saturn’s gravitational pull.

"There has always been the question about whether the rings were primordial material that was unable to grow into a moon or debris left over from a breakup event," said Joseph Burns, Cornell professor of astronomy and of theoretical and applied mechanics and paper co-author, along with Cornell research associate Matthew Hedman and researchers at other institutions. The discovery doesn’t rule out the accretion model, but "it’s a step in that direction," said Tiscareno. "It’s hard for direct accretion to produce particles this large. It’s much easier if you start with a solid icy core, like a shard from a breakup."

The discovery also helps explain fully cleared openings such as the Encke and Keeler gaps within the rings. The gravitational influence of a larger moon like Pan or Daphnis wraps around the circumference of the rings, creating a gap. The smaller moonlets begin to create this effect, the researchers say, but their influence is not strong enough to prevent particles from falling into the rings ahead of and behind them.

Like a motorboat’s wake on a smooth lake, the four observed disturbances are particularly visible since the area they inhabit is otherwise smooth. But the fact that four were found in just two images covering only a tiny fraction of the ring makes it likely that millions more exist. By studying them further, researchers hope to gain a better understanding of how Saturn’s rings formed -- and even about how solar systems form around stars.

"The structures we observe with Cassini are strikingly similar to those seen in many numerical models of the early stages of planetary formation, even though the scales are vastly different," said Carl Murray, a co-author and astronomer at Queen Mary College, University of London. "In this way, Cassini is giving us unique insight into the origin of planets."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the mission for NASA.

During its Saturn tour, as currently planned, Cassini will complete 74 orbits of the ringed planet, 44 close flybys of the moon Titan and numerous flybys of Saturn’s other icy moons.

Blaine Friedlander Jr. | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>