Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini spacecraft finds evidence of football-field sized moonlets in Saturn’s A ring

31.03.2006


New observations of propeller-shaped disturbances in Saturn’s A ring indicate the presence of four small, embedded moons -- and most likely millions more, Cornell University astronomers report.


Provided
The left image shows the B ring, Cassini Division, A ring and F ring, with the location of the propeller-shaped disturbances indicated. The center image is a closer view of the A ring, showing the radial locations where propeller features were spotted. In the right-hand image, the propellers appear as double dashes in the two close-up images. The unseen moonlets, each roughly the size of a football field, lie in the center of each structure. (The horizontal lines in the image represent electronic noise and do not correspond to ring features.)



This is the first evidence of the existence of moonlets bridging the gap in size between the larger ring moons Pan and Daphnis (several miles each in diameter) and the much smaller ice particles that comprise the bulk of the rings. The discovery could lead to a better understanding of the origin and formation of Saturn’s rings and the solar system as a whole.

Matthew Tiscareno, a Cornell research associate, is lead author of a paper describing the discovery in the March 30 issue of the journal Nature.


The four disturbances, which appear as pairs of slightly offset bright horizontal streaks in an otherwise bland region of the ring, were captured in two images taken in 2004 by NASA’s Cassini spacecraft. Astronomers say the streaks are indicators of orbiting moons about 100 meters (328 feet) in diameter: about the length of a football field, but still too small for even Cassini’s highly sensitive Imaging Science Subsystem (ISS) to see directly, but large enough to exert an observable gravitational pull on the particles around them.

"The discovery of these intermediate-sized particles tells us that Pan and Daphnis are probably just the largest members of the ring population, rather than interlopers from somewhere else," said Tiscareno.

A continuum of particle sizes lends strong support to the theory that Saturn’s rings were formed when another object fragmented close to the planet, breaking into pieces which were then captured by Saturn’s gravitational pull.

"There has always been the question about whether the rings were primordial material that was unable to grow into a moon or debris left over from a breakup event," said Joseph Burns, Cornell professor of astronomy and of theoretical and applied mechanics and paper co-author, along with Cornell research associate Matthew Hedman and researchers at other institutions. The discovery doesn’t rule out the accretion model, but "it’s a step in that direction," said Tiscareno. "It’s hard for direct accretion to produce particles this large. It’s much easier if you start with a solid icy core, like a shard from a breakup."

The discovery also helps explain fully cleared openings such as the Encke and Keeler gaps within the rings. The gravitational influence of a larger moon like Pan or Daphnis wraps around the circumference of the rings, creating a gap. The smaller moonlets begin to create this effect, the researchers say, but their influence is not strong enough to prevent particles from falling into the rings ahead of and behind them.

Like a motorboat’s wake on a smooth lake, the four observed disturbances are particularly visible since the area they inhabit is otherwise smooth. But the fact that four were found in just two images covering only a tiny fraction of the ring makes it likely that millions more exist. By studying them further, researchers hope to gain a better understanding of how Saturn’s rings formed -- and even about how solar systems form around stars.

"The structures we observe with Cassini are strikingly similar to those seen in many numerical models of the early stages of planetary formation, even though the scales are vastly different," said Carl Murray, a co-author and astronomer at Queen Mary College, University of London. "In this way, Cassini is giving us unique insight into the origin of planets."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the mission for NASA.

During its Saturn tour, as currently planned, Cassini will complete 74 orbits of the ringed planet, 44 close flybys of the moon Titan and numerous flybys of Saturn’s other icy moons.

Blaine Friedlander Jr. | EurekAlert!
Further information:
http://www.news.cornell.edu/stories/March06/Tiscareno.Saturn.lg.html
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>