Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data reveals the beginnings of the universe

31.03.2006


Looking back 13.7 billion years, astronomers have collected data that tells us, with greater precision than ever before, what happened in the first two-trillionths of a second after the big bang. The data agrees very well with theoretical predictions and may tell us something about the way the universe is behaving today, particularly why it is expanding faster than it ought to be.


NASA/ WMAP Science Team.
A map of the cosmic microwave background of the universe as detected by NASA’s WMAP satellite. The uneven distribution is believed to reflect the distribution of the very first particles formed after the big bang.



"Observation is helping us constrain the theories," said Rachel Bean, Cornell assistant professor of astronomy, who is both a cosmology theorist and a member of the Wilkinson Microwave Anisotropy Probe (WMAP) team, which on March 10 released a high-resolution picture of the cosmic microwave background radiation (CMB), a sort of signature of the big bang.

For cosmologists in general, the WMAP data confirms a widely held theory called the Lambda-CDM (cold dark matter) model, a mathematical description of how the big bang might have played out. For Bean, it throws light on her efforts to explain "dark energy." Recent observations of supernovae suggest that the expansion of the universe is not just "coasting" from the big bang, but that the expansion is accelerating. Some unknown energy source is exerting a force contrary to gravity. Theorists postulate a cosmological constant -- a fundamental property of space -- or something called quintessence -- a sort of energy field.


There is a possibility, Bean said, that the force that drove the initial expansion of the universe may be related to the force that now seems to be causing the expansion to accelerate. "The same force but with a different particle," she cautioned.

At the big bang, theory says, all the matter and energy in the universe was compressed into a space about a trillionth of a trillionth of a trillionth of a meter across. The laws of physics don’t allow measurements smaller than that. As soon as it came into being, it exploded, at first releasing a field of undirected energy filled with massive particles dubbed "inflatons" that carry a sort of negative gravity, propelling everything outward. By the end of the first trillionth of a second, the inflatons had decayed into a seething plasma of elementary particles and energy in the form of photons.

The plasma wasn’t uniform. If it had been, we wouldn’t be here. There would have been no irregularities to cause stars and planets to coalesce. Fortunately, the inflatons experienced quantum fluctuations. Quantum physics allows particles to wink out of existence here and pop up over there. The appearance of the primordial, point-sized universe in the first place is considered to be a quantum fluctuation on a grand scale. So the inflatons became unevenly distributed, and when they decayed they made an uneven plasma.

About 400,000 years later -- an eyeblink in universe time -- the universe had expanded and cooled enough for electrons and protons to form hydrogen atoms without photons crashing into them and knocking them apart. Photons readily interact with electrons but hardly ever with neutral hydrogen, so once atoms formed, the primeval light was able to travel unhindered through the universe.

That radiation was uneven, too, varying in intensity in proportion to the density of the places from which it had originated, a variation that was just an expanded version of the original quantum fluctuations. Imagine a balloon made of poorly formed rubber, thicker in some places than others. As the balloon blows up, all the rubber will stretch, but it will still be thicker and thinner in the same relative locations.

Faint echoes of that original radiation still permeate the universe, and for three years the WMAP satellite has been scanning the sky for them. By averaging the data over that long a time, researchers have been able to filter out interference from our local galaxy and from noise built into the instruments to provide a higher-resolution picture than ever before of the cosmic background.

A Fourier analysis -- a mathematical method that finds the regularities in a complex signal -- is revealing the principles behind the lumpiness of the early plasma. The WMAP satellite also collects data on the polarization of the CMB, which tells something about the way photons were scattered in collisions with electrons, both in the beginning and later, when stars were forming. In this way, Bean said, the subsequent expansion of the universe has left a signature on the radiation passing through it.

Among other conclusions, the new data confirms the age of the universe at 13.7 billion years and says that the universe is almost "flat" (that is, space is only curved a bit through a higher dimension). As for dark energy, Bean said the results are consistent with the simplest theory, a "cosmological constant" representing a fundamental property of space, meaning that dark energy has the same value at every point in space and time.

"Up until the 1990s," Bean said, "cosmology was mostly abstract. But now we have exceptional observational constraints to test the theories." She’s involved in the experiment, she said, because "It’s the responsibility of theorists to understand how the observations were made, how the precision is achieved, where the errors can be."

WMAP is a partnership between the NASA Goddard Space Flight Center and Princeton University. In addition to Bean, other WMAP team members are located at Brown University, the University of British Columbia, the University of Chicago and the University of California-Los Angeles.

Blaine Friedlander Jr. | EurekAlert!
Further information:
http://www.news.cornell.edu/stories/March06/Bean.CMB.ws.html
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>