Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds "missing link" moonlet evidence in Saturn’s rings

31.03.2006


Scientists with NASA’s Cassini mission have found evidence that a new class of small moonlets resides within Saturn’s rings. There may be as many as 10 million of these objects within one of Saturn’s rings alone. The research is published in Nature today (March 30th).



The moonlets’ existence could help answer the question of whether Saturn’s rings were formed through the break-up of a larger body or are the remnants of the disk of material from which Saturn and its moons formed.

"These moonlets are likely to be chunks of the ancient body whose break-up produced Saturn’s glorious rings," said Joseph Burns of Cornell University, Ithaca, N.Y., a co-author of the report.


Careful analysis of high-resolution images taken by Cassini’s cameras revealed four faint, propeller-shaped double streaks. These features were found in an otherwise bland part of the mid-A Ring, a bright section in Saturn’s main rings. Cassini imaging scientists reporting in this week’s edition of the journal Nature believe the "propellers" provide the first direct observation of how moonlets of this size affect nearby particles. Cassini took the images as it slipped into Saturn orbit on July 1, 2004.

Previous measurements, including those made by NASA’s Voyager spacecraft in the early 1980s, have shown that Saturn’s rings contain mostly small water-ice particles ranging from less than 1 centimetre (one-half inch) across to the size of a small house. Scientists knew about two larger embedded ring moons such as 30-kilometer-wide (19-mile) Pan and 7-kilometer-wide (4-mile) Daphnis. The latest findings mark the first evidence of objects of about 100 meters (300 feet) in diameter.
From the number of moonlets spotted in the very small fraction of the A ring seen in the images, scientists estimated the total number of moonlets to be about 10 million.

"The discovery of these intermediate-sized bodies tells us that Pan and Daphnis are probably just the largest members of the ring population, rather than interlopers from somewhere else," said Matthew Tiscareno, an imaging team research associate at Cornell and lead author on the Nature paper.

Moons as large as Pan and Daphnis clear large gaps in the ring particles as they orbit Saturn. In contrast, smaller moonlets are not strong enough to clear out the ring, resulting in a partial gap centred on the moonlet and shaped like an airplane propeller. Such features created by moonlets were predicted by computer models, which give scientists confidence in their latest findings.

"We acquired this spectacular, one-of-a-kind set of images immediately after getting into orbit for the express purpose of seeing fine details in the rings that we had not seen previously," said Carolyn Porco, Cassini imaging team leader and co-author. "This will open up a new dimension in our exploration of Saturn’s rings and moons, their origin and evolution."

The detection of moonlets embedded in a ring of smaller particles may provide an opportunity to observe the processes by which planets form in disks of material around young stars, including our own early solar system. "The structures we observe with Cassini are strikingly similar to those seen in many numerical models of the early stages of planetary formation, even though the scales are dramatically different," said co-author Carl Murray, an imaging team member at Queen Mary, University of London. "Cassini is giving us a unique insight into the origin of planets."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>