Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission control team readies for Venus arrival

28.03.2006


Venus Express mission controllers at ESA’s Space Operations Centre (ESOC) are in intensive preparation for an 11 April arrival at the spacecraft’s namesake destination.



The critical manoeuvre will involve a deft combination of basic physics, expert spacecraft engineering and precise timing.

Next month’s Venus Orbit Insertion (VOI) will mark the arrival of the first ESA mission at Venus, one of the Solar System’s most enigmatic planets.


Orbit insertion comprises a series of telecommands, engine burns and manoeuvres designed to slow the spacecraft from a velocity of 29 000 km per hour relative to Venus just before the first burn to an entry velocity some 15 percent slower, allowing it to be captured into orbit around the planet.

Pointing engine for braking

Controllers will command the spacecraft to ’slew’ (rotate) so as to point the engine nozzle in the direction of motion starting at 08:03 (all times CEST on Earth) 11 April. Venus Express will perform an approximately 51-minute main engine burn starting at 09:19.

The spacecraft’s solar arrays will also be positioned so as to reduce the possibility of excessive mechanical load during engine ignition.

Over the subsequent days, a series of additional burns will be done to lower the orbit apocentre (point furthest from the planet) and to control the pericentre (point closest to the planet). The aim is to end up in a 24-hour orbit around the ’hothouse’ planet early in May.

Critical manoeuvres require precise timing

All steps must take place in the correct sequence and the spacecraft must be brought into the correct configuration in time for the main engine burn, which itself can only happen at a specific moment. The risk is that, if any problems occur, the spacecraft could miss its ’window’ for capture, making any recovery extremely challenging.

During the engine burn, the spacecraft will also enter an occultation, which occurs when Venus Express travels behind the planet so that the line of site to Earth is blocked; it will lose radio contact for almost 10 minutes. Controllers will closely watch for reacquisition of radio contact once the occultation ends at 09:56.

"Venus orbit insertion is a complex step. The main challenge is that the manoeuvre must happen at the right time," says Jean-Baptiste Gratadour, Attitude and Orbital Control Systems Engineer for Venus Express at ESOC and one of the dozens of engineers and scientists now readying for arrival at Venus.

Venus Express in great shape

To prepare for orbit insertion, the spacecraft has had to pass a series of important tests and milestones.

"In the night between 16 and 17 February, Venus Express passed its VOI readiness review after a successful burn of its main engine, providing a thrust of 400 Newtons," said Don McCoy, Venus Express Project Manager. "This was followed by a minor mid-course correction provided by the spacecraft’s four 10-Newton thrusters on 24 February."

A 400-Newton engine generates 625 kilowatts of power, making a typical automotive engine seem feeble in comparison.

NASA to provide direct support

Recent rehearsals have included establishing the communication link between the Venus Express control room at ESOC and the 70-metre deep-space antenna at Madrid, part of NASA’s Deep Space Network (DSN).

This ground station will support VOI due to its geographic location. For routine operations, Venus Express communicates using X-band via ESA’s new 35-metre deep-space antenna at Cebreros, near Madrid (Spain).

The link was tested by broadcasting a live signal from the Venus Express low-gain antenna to Madrid and then into ESOC.

This test was fundamental because, during orbit insertion, the low-gain antenna will be used to track the spacecraft’s velocity. The Venus Express high-gain antenna, normally used to communicate with Earth, will in fact be rotated away and out of line of sight of ground stations during the operation.

"We are also conducting continuous tracking of the spacecraft position through different techniques and using several ground stations, including ESA’s Cebreros station and NASA Deep Space Network stations at Goldstone (USA) and Canberra (Australia) and Madrid," says Andrea Accomazzo, Venus Express Spacecraft Operations Manager. "All our efforts are in fact now concentrated on the spacecraft navigation to prepare for the big day of arrival at Venus," he added.

During orbit insertion, the spacecraft will be 125 000 000 kilometres from Earth and the round-trip signal time will be 13 minutes and 32 seconds.

Bernhard von Weyhe | alfa
Further information:
http://www.esa.int/SPECIALS/Venus_Express/SEMJITM65LE_0.html

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>