Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ideas on gas-giant planet formation take shape

24.03.2006


Rocky planets such as Earth and Mars are born when small particles smash together to form larger, planet-sized clusters in a planet-forming disk, but researchers are less sure about how gas-giant planets such as Jupiter and Saturn form. Is core accretion--the process that creates their smaller, terrestrial cousins--responsible? Or could an alternate model known as disk instability--in which the planet-forming disk itself actually fragments into a number of planet-sized clumps--be at work? Could both be possible under different circumstances?



Recent work from the Carnegie Institution’s Department of Terrestrial Magnetism explores both possibilities. This and other relevant work regarding planet formation is presented at the NASA Astrobiology Science Conference (AbSciCon) 2006 at the Ronald Reagan Building in Washington, D.C. March 26-30. See http://abscicon2006.arc.nasa.gov/ for details.

Carnegie Fellow Hannah Jang-Condell1 has devised a method to catch the early stages of gas-giant core accretion in the act. If actively accreting cores exist, they should leave a gravitational "dimple" in the planet-forming disk--even if the cores are only a fraction the size of Jupiter. Since disk instability would result in planet-sized fragments straight away, the existence of these young, intermediate-sized cores would be a clear indicator of core accretion.


The telltale gravitational dimples resemble craters on the Moon with sunlight shining in from the side: the inside of the edge nearest the star is shadowed, while the star-facing edge is illuminated. The bright side heats up and the shadowed side remains cool, yielding a distinct thermal pattern that an Earth-based observer should be able to see in the infrared spectrum. "If we could detect this signature in a protoplanetary disk, it would indicate the presence of a young planetary body that could go on to form a gas-giant via core accretion," Jang-Condell said.

In some situations, however, core accretion seems an unlikely model for gas-giant planet formation. For example, theoretical computer models by DTM staff member Alan Boss2 suggest that disk instability best explains planet formation around M dwarf stars, which have masses from one tenth to one half that of the Sun. Core accretion would likely take more than 10 million years around these small, gravitationally weak stars, while disk instability happens quickly enough to yield gas-giant planets in as little as 1,000 years.

"M dwarf stars dominate the stellar population in the solar neighborhood, and so are attractive targets for searching for habitable planets," Boss said. "The models show that gas-giant planets are indeed likely to form…at distances sufficiently large enough to permit the later formation of habitable, terrestrial planets."

Other talks and posters on planet formation at the conference include: A study of organic matter in the planet-forming disks of three young stars, ranging in age from less than one million to over 300 million years3; methods to detect water ice, methane ice, and silicate dust in the planet-forming disks of distant stars4; and a method to deduce the composition of far-off planets based on their mass and radius5.

Alan Boss | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>