Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Williams College faculty/student team travel to study solar eclipse

22.03.2006


A team of Williams College faculty and students is preparing to scientifically observe the total eclipse of the Sun that will sweep across the far side of Earth on March 29. Six undergraduates are joining Jay Pasachoff, Bryce Babcock, and Steven Souza of the astronomy and physics departments, who have worked together on a series of expeditions, most recently to study Pluto and its moon Charon.



The expedition is to Kastellorizo, a small island east of Rhodes in the Greek Dodecanese. Aside from Cyprus, it is the farthest eastern point of Europe, so many eclipse watchers are expected to travel there. The Williams group will be on site a week in advance to set up, test, and align its nearly ton of equipment. They are working closely with Professor John Seiradakis of the Aristotelian University of Thessaloniki, continuing a collaboration begun with joint observations there of the 2004 transit of Venus.

Pasachoff, chair of the International Astronomical Union’s Working Group on Eclipses, will be observing his 42nd solar eclipse. He is Field Memorial Professor of Astronomy and director of the Hopkins Observatory at Williams. Babcock is coordinator of science facilities and staff physicist; Souza is instructor of astronomy and observatory supervisor. They last observed an eclipse in 2002 in Australia. The total solar eclipses since then have been visible only from Antarctica in 2003 and the mid-Pacific in 2005, preventing the use of complex equipment.


The student participants are Megan Bruck ’07 of Tempe, Ariz., Paul Hess ’08 of Simsbury, Conn., Shelby Kimmel ’08 of Newton, Mass., Jesse Levitt ’08 of Natick, Mass., Amy Steele ’08 of Orlando, Fla., and Anna Tsykalova ’08 of Ardmore, Pa. The group devoted time during Williams’ January Winter Study Period to test the expedition’s equipment.

The eclipse will start at dawn on the eastern tip of Brazil and sweep across the Atlantic and over western and northern Africa, where many astronomers will observe from southern Libya. The path of totality will then cross the Mediterranean and Kastellorizo, less than two miles off the Turkish coast. After passing over the middle of Turkey, the path of totality will continue across central Asia before ending at sunset in northwestern Mongolia. A partial eclipse will be visible from all of Europe and most of Africa and Asia.

The Williams team will have three minutes to capture its observations of the Sun’s corona, the faint outer halo of million-degree gas that is hidden by the sky except during a total eclipse. That length of time is relatively long compared with the approximately 30 seconds afforded by the most recent eclipses.

Two of the group’s experiments involve searching for the mechanism that heats the solar corona to millions of degrees by taking rapid series of images with new electronic cameras through specially designed filters. One filter passes a narrowly defined color in the green portion of the light spectrum and the other passes a narrowly defined color in the red. Each is emitted by gas in the corona from iron that has been heated to such high temperatures that it has been stripped of 13 or 9 electrons, respectively, from its normal 26.

A third experiment uses a filter that provides an even more narrowly defined coronal color. Known as a Fabry-Perot, it was designed and built by the Johns Hopkins University Applied Physics Laboratory for David Rust, a solar astronomer there. Rust and his colleague Matthew Noble will be in Kastellorizo. Williams alumnus Rob Wittenmyer ’98, now a graduate student in astronomy at the University of Texas, also will work with the team on site.

A fourth experiment involves a specially built telescope that matches one now defunct aboard the Solar and Heliospheric Observatory (SOHO), a satellite built and operated by the European Space Agency and NASA. Both organizations have arranged with Pasachoff to receive a digital image immediately after the eclipse, to merge with their own spacecraft images and to distribute to the public. Bernhard Fleck, SOHO project scientist, will be on site with the Williams team.

The group will capture a further variety of digital and film images. They will include work by several veterans of previous Williams eclipse expeditions, including Lee Hawkins from Appalachian State University and Jonathan Kern of the Large Binocular Observatory in Tucson, Ariz. Kern will capture images with a camera modified to flatten the extensive dynamic range of the corona to enable the delicate coronal structure to show on a single piece of photographic film.

In Kastellorizo, the Williams team will also be joined by Seiradakis and two of his students, along with Margarita Metaxa of Athens, who works with Pasachoff on the International Astronomical Union’s Commission on Education and Development, and two of her high-school students.

Pasachoff maintains the Website http://www.eclipses.info that links to various eclipse-related resources. With the assistance of Milos Mladenovic of Williams’ office of information technology, he has posted details of all the scientific experiments planned for March 29 at sites in Libya, Egypt, Greece, and Turkey.

Jim Kolesar | EurekAlert!
Further information:
http://www.williams.edu
http://www.eclipses.info

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>