Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Williams College faculty/student team travel to study solar eclipse

22.03.2006


A team of Williams College faculty and students is preparing to scientifically observe the total eclipse of the Sun that will sweep across the far side of Earth on March 29. Six undergraduates are joining Jay Pasachoff, Bryce Babcock, and Steven Souza of the astronomy and physics departments, who have worked together on a series of expeditions, most recently to study Pluto and its moon Charon.



The expedition is to Kastellorizo, a small island east of Rhodes in the Greek Dodecanese. Aside from Cyprus, it is the farthest eastern point of Europe, so many eclipse watchers are expected to travel there. The Williams group will be on site a week in advance to set up, test, and align its nearly ton of equipment. They are working closely with Professor John Seiradakis of the Aristotelian University of Thessaloniki, continuing a collaboration begun with joint observations there of the 2004 transit of Venus.

Pasachoff, chair of the International Astronomical Union’s Working Group on Eclipses, will be observing his 42nd solar eclipse. He is Field Memorial Professor of Astronomy and director of the Hopkins Observatory at Williams. Babcock is coordinator of science facilities and staff physicist; Souza is instructor of astronomy and observatory supervisor. They last observed an eclipse in 2002 in Australia. The total solar eclipses since then have been visible only from Antarctica in 2003 and the mid-Pacific in 2005, preventing the use of complex equipment.


The student participants are Megan Bruck ’07 of Tempe, Ariz., Paul Hess ’08 of Simsbury, Conn., Shelby Kimmel ’08 of Newton, Mass., Jesse Levitt ’08 of Natick, Mass., Amy Steele ’08 of Orlando, Fla., and Anna Tsykalova ’08 of Ardmore, Pa. The group devoted time during Williams’ January Winter Study Period to test the expedition’s equipment.

The eclipse will start at dawn on the eastern tip of Brazil and sweep across the Atlantic and over western and northern Africa, where many astronomers will observe from southern Libya. The path of totality will then cross the Mediterranean and Kastellorizo, less than two miles off the Turkish coast. After passing over the middle of Turkey, the path of totality will continue across central Asia before ending at sunset in northwestern Mongolia. A partial eclipse will be visible from all of Europe and most of Africa and Asia.

The Williams team will have three minutes to capture its observations of the Sun’s corona, the faint outer halo of million-degree gas that is hidden by the sky except during a total eclipse. That length of time is relatively long compared with the approximately 30 seconds afforded by the most recent eclipses.

Two of the group’s experiments involve searching for the mechanism that heats the solar corona to millions of degrees by taking rapid series of images with new electronic cameras through specially designed filters. One filter passes a narrowly defined color in the green portion of the light spectrum and the other passes a narrowly defined color in the red. Each is emitted by gas in the corona from iron that has been heated to such high temperatures that it has been stripped of 13 or 9 electrons, respectively, from its normal 26.

A third experiment uses a filter that provides an even more narrowly defined coronal color. Known as a Fabry-Perot, it was designed and built by the Johns Hopkins University Applied Physics Laboratory for David Rust, a solar astronomer there. Rust and his colleague Matthew Noble will be in Kastellorizo. Williams alumnus Rob Wittenmyer ’98, now a graduate student in astronomy at the University of Texas, also will work with the team on site.

A fourth experiment involves a specially built telescope that matches one now defunct aboard the Solar and Heliospheric Observatory (SOHO), a satellite built and operated by the European Space Agency and NASA. Both organizations have arranged with Pasachoff to receive a digital image immediately after the eclipse, to merge with their own spacecraft images and to distribute to the public. Bernhard Fleck, SOHO project scientist, will be on site with the Williams team.

The group will capture a further variety of digital and film images. They will include work by several veterans of previous Williams eclipse expeditions, including Lee Hawkins from Appalachian State University and Jonathan Kern of the Large Binocular Observatory in Tucson, Ariz. Kern will capture images with a camera modified to flatten the extensive dynamic range of the corona to enable the delicate coronal structure to show on a single piece of photographic film.

In Kastellorizo, the Williams team will also be joined by Seiradakis and two of his students, along with Margarita Metaxa of Athens, who works with Pasachoff on the International Astronomical Union’s Commission on Education and Development, and two of her high-school students.

Pasachoff maintains the Website http://www.eclipses.info that links to various eclipse-related resources. With the assistance of Milos Mladenovic of Williams’ office of information technology, he has posted details of all the scientific experiments planned for March 29 at sites in Libya, Egypt, Greece, and Turkey.

Jim Kolesar | EurekAlert!
Further information:
http://www.williams.edu
http://www.eclipses.info

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>