Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’liquid lens’ data for immersion lithography

21.03.2006


New data on the properties of potential "liquid lenses" compiled by the National Institute of Standards and Technology (NIST) could help the semiconductor industry continue to shrink feature sizes on computer chips.



In a paper published in the March 10, 2006 issue of Applied Optics,* NIST researchers present newly measured values for key properties of organic solvents and inorganic solutions that might be useful in immersion lithography. Little more than an idea three years ago, immersion lithography is already being commercialized, thanks in part to previously published NIST data. The technique uses liquids to sharpen the focus of patterns used in "printing" semiconductor circuits, much like the eye uses a liquid center to help form images on the retina. Prototype commercial systems use water between the last lens element and the circuit’s silicon wafer base, to focus 193-nanometer wavelengths of light down to circuit feature sizes of perhaps 45 nanometers.

The liquids used for immersion lithography must have a high refractive index--the higher the better--which affects how light bends as it crosses interfaces. NIST previously published data on the refractive index of water, which is almost 50 percent higher than that of air. "When we started this work two years ago, you couldn’t even find adequate data on water," says Simon Kaplan, lead author of the new paper.


Several companies have proposed proprietary high-index immersion liquids. The NIST work, by contrast, is a fully public report of the key optical properties of a range of fluids. The survey indicates useful trends, such as the fact that refractive index increases with molecular size, and includes data on the effect of temperature on the refractive index, which is crucial in maintaining a sharp focus during the printing process. The data may help other researchers identify useful liquids or calibrate their own measurements.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>