Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’liquid lens’ data for immersion lithography

21.03.2006


New data on the properties of potential "liquid lenses" compiled by the National Institute of Standards and Technology (NIST) could help the semiconductor industry continue to shrink feature sizes on computer chips.



In a paper published in the March 10, 2006 issue of Applied Optics,* NIST researchers present newly measured values for key properties of organic solvents and inorganic solutions that might be useful in immersion lithography. Little more than an idea three years ago, immersion lithography is already being commercialized, thanks in part to previously published NIST data. The technique uses liquids to sharpen the focus of patterns used in "printing" semiconductor circuits, much like the eye uses a liquid center to help form images on the retina. Prototype commercial systems use water between the last lens element and the circuit’s silicon wafer base, to focus 193-nanometer wavelengths of light down to circuit feature sizes of perhaps 45 nanometers.

The liquids used for immersion lithography must have a high refractive index--the higher the better--which affects how light bends as it crosses interfaces. NIST previously published data on the refractive index of water, which is almost 50 percent higher than that of air. "When we started this work two years ago, you couldn’t even find adequate data on water," says Simon Kaplan, lead author of the new paper.


Several companies have proposed proprietary high-index immersion liquids. The NIST work, by contrast, is a fully public report of the key optical properties of a range of fluids. The survey indicates useful trends, such as the fact that refractive index increases with molecular size, and includes data on the effect of temperature on the refractive index, which is crucial in maintaining a sharp focus during the printing process. The data may help other researchers identify useful liquids or calibrate their own measurements.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>