Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First images of flowing nano ripples

21.03.2006


TU Delft Researchers have shed new light on the formation of nanoscale surface features, such as nano ripples. These features are important because they could be useful as templates for growing other nanostructures. The scientific journal Physical Review Letters published an article this week on the research in Delft.



Some remarkable geometrical features may appear for instance on a glass surface when it is bombarded with ions, such as triangular patterns and ripples. Scientists study nano ripples and other geometrical features created by bombarding a surface with a beam of ions because of their potential as a template for growing other specific nanostructures. If they want to exploit this potential, they will first need a thorough understanding of the creation and evolution of geometrical features of this kind.

A scientific explanation of the ripples was given fifteen years ago. It was already known that surfaces wear quickly when they are bombarded. The erosion is stronger in the valleys of the ripples than in other places, so the valleys get deeper as time passes.


But the nano ripples do not continue to grow indefinitely. The bombardment liquefies the upper layer of the material, so that it flows from the peaks into the valleys.

No one has ever seen this actual flow until now, only the final result: the partly-filled ripple patterns. Dr Paul Alkemade, a researcher at the Kavli Institute of Nanoscience of Delft University of Technology became the first person to watch this flow using an electron microscope incorporating an ion beam.

After observing the process, Dr Alkemade also realised that the theory of the formation of nano ripples needed revision. It was commonly thought that the ripples moved against the obliquely incident ion beam, but now we know that the waves flow in the same direction as the incoming ions.

At first glance, the observation seems to make sense: the situation resembles waves on water that are propelled by the wind. The comparison does not stand up to scrutiny, though, because the force of the incoming ions is minute relative to the surface tension in the glass.

Alkemade: ‘My explanation is that the slopes that are oriented towards the incoming ion beam absorb more energy than those in the shadow. Pressure then builds up in the first type of slope causing material to flow away over the peak or through the valley to the opposite slope. In the end, the ripple pattern moves slightly in the direction of the incident beam.’

A movie of the flowing nano ripples can be viewed at http://www.tudelft.nl

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>