Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First images of flowing nano ripples


TU Delft Researchers have shed new light on the formation of nanoscale surface features, such as nano ripples. These features are important because they could be useful as templates for growing other nanostructures. The scientific journal Physical Review Letters published an article this week on the research in Delft.

Some remarkable geometrical features may appear for instance on a glass surface when it is bombarded with ions, such as triangular patterns and ripples. Scientists study nano ripples and other geometrical features created by bombarding a surface with a beam of ions because of their potential as a template for growing other specific nanostructures. If they want to exploit this potential, they will first need a thorough understanding of the creation and evolution of geometrical features of this kind.

A scientific explanation of the ripples was given fifteen years ago. It was already known that surfaces wear quickly when they are bombarded. The erosion is stronger in the valleys of the ripples than in other places, so the valleys get deeper as time passes.

But the nano ripples do not continue to grow indefinitely. The bombardment liquefies the upper layer of the material, so that it flows from the peaks into the valleys.

No one has ever seen this actual flow until now, only the final result: the partly-filled ripple patterns. Dr Paul Alkemade, a researcher at the Kavli Institute of Nanoscience of Delft University of Technology became the first person to watch this flow using an electron microscope incorporating an ion beam.

After observing the process, Dr Alkemade also realised that the theory of the formation of nano ripples needed revision. It was commonly thought that the ripples moved against the obliquely incident ion beam, but now we know that the waves flow in the same direction as the incoming ions.

At first glance, the observation seems to make sense: the situation resembles waves on water that are propelled by the wind. The comparison does not stand up to scrutiny, though, because the force of the incoming ions is minute relative to the surface tension in the glass.

Alkemade: ‘My explanation is that the slopes that are oriented towards the incoming ion beam absorb more energy than those in the shadow. Pressure then builds up in the first type of slope causing material to flow away over the peak or through the valley to the opposite slope. In the end, the ripple pattern moves slightly in the direction of the incident beam.’

A movie of the flowing nano ripples can be viewed at

Maarten van der Sanden | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>