Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The locked migration of giant protoplanets

21.03.2006


In an article to be published in Astronomy & Astrophysics, two British astronomers present new numerical simulations of how planetary systems form. They find that, in the early stages of planetary formation, giant protoplanets migrate inward in lockstep into the central star.



The current picture of how planetary systems form is as follows: i) dust grains coagulate to form planetesimals of up to 1 km in diameter; ii) the runaway growth of planetesimals leads to the formation of ~100 – 1000 km-sized planetary embryos; iii) these embryos grow in an “oligarchic” manner, where a few large bodies dominate the formation process, and accrete the surrounding and much smaller planetesimals. These “oligarchs” form terrestrial planets near the central star and planetary cores of ten terrestrial masses in the giant planet region beyond 3 astronomical units (AU).

However, these theories fail to describe the formation of gas giant planets in a satisfactory way. Gravitational interaction between the gaseous protoplanetary disc and the massive planetary cores causes them to move rapidly inward over about 100,000 years in what we call the “migration” of the planet in the disc. The prediction of this rapid inward migration of giant protoplanets is a major problem, since this timescale is much shorter than the time needed for gas to accrete onto the forming giant planet. Theories predict that the giant protoplanets will merge into the central star before planets have time to form. This makes it very difficult to understand how they can form at all.


For the first time, Paul Cresswell and Richard Nelson examined what happens to a cluster of forming planets embedded in a gaseous protoplanetary disc. Previous numerical models have included only one or two planets in a disc. But our own solar system, and over 10% of the known extrasolar planetary systems, are multiple-planet systems. The number of such systems is expected to increase as observational techniques of extrasolar systems improve. Cresswell and Nelson’s work is the first time numerical simulations have included such a large number of protoplanets, thus taking into account the gravitational interaction between the protoplanets and the disc, and among the protoplanets themselves.

The primary motivation for their work is to examine the orbits of protoplanets and whether some planets could survive in the disc for extended periods of time. Their simulations show that, in very few cases (about 2%), a lone protoplanet is ejected far from the central star, thus lengthening its lifetime. But in most cases (98%), many of the protoplanets are trapped into a series of orbital resonances and migrate inward in lockstep, sometimes even merging with the central star. Figure 1 illustrates the migration of a swarm of protoplanets.

Cresswell and Nelson thus claim that gravitational interactions within a swarm of protoplanets embedded in a disc cannot stop the inward migration of the protoplanets. The “problem” of migration remains and requires more investigation, although the astronomers propose several possible solutions. One may be that several generations of planets form and that only the ones that form as the disc dissipates survive the formation process. This may make it harder to form gas giants, as the disc is depleted of the material from which gas giant planets form. (Gas giant formation may still be possible though, if enough gas lies outside the planets’ orbits, since new material may sweep inward to be accreted by the forming planet). Another solution might be related to the physical properties of the protoplanetary disc. In their simulations, the astronomers assumed that the protoplanetary disc is smooth and non-turbulent, but of course this might not be the case. Large parts of the disc could be more turbulent (as a consequence of instabilities caused by magnetic fields), which may prevent inward migration over long time periods.

This work joins other studies of planetary system formation that are currently being done by a European network of scientists. Our view of how planets form has drastically changed in the last few years as the number of newly discovered planetary systems has increased. Understanding the formation of giant planets is currently one of the major challenges for astronomers.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release&niv3=PRaa200607

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>