Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn ring spokes may re-appear in July, says new U. of Colorado study

17.03.2006


Voyager 2 image of Saturn ring spokes. Image courtesy NASA/JPL.


The unusual spokes that appear fleetingly on the rings of Saturn only to disappear for years at a time may become visible again by July, according to a new study spearheaded by the University of Colorado at Boulder.

The spokes, which are up to 6,000 miles long and 1,500 miles in width, were first spotted 26 years ago by the Voyager spacecraft, said CU-Boulder Mihaly Horanyi of the Laboratory for Atmospheric and Space Physics. But when the Cassini spacecraft arrived at Saturn in July of 2004, the striking radial features that cut across Saturn’s ring plane were nowhere to be found -- an event that disappointed and puzzled many scientists, he said.

The Hubble Space Telescope occasionally observed the ring spokes in the late 1990s, said Horanyi, also a professor of physics at CU-Boulder. But the spokes gradually faded, a result of Saturn’s seasonal, orbital motion and its tilted axis of rotation that altered the light-scattering geometry.



"The spokes were switched off by the time Cassini arrived," said Horanyi. "We think it is a seasonal phenomena related to the sun rising and setting over the ring plane that changes the physical environment there, making it either friendly or hostile to their formation."

A paper on the subject appears the March 17 issue of Science magazine. The paper was authored doctoral student Colin Mitchell and Horanyi of CU-Boulder’s LASP, Ove Havnes of the University of Trosmo in Norway and Carolyn Porco of the Space Science Institute of Boulder.

The spokes are made up of tiny dust particles less than a micron in width -- about 1/50th the width of a human hair -- that collect electrostatic charges in the plasma environment of the rings and become subject to electrical and magnetic forces, said Horanyi.

The right conditions cause them to gain an extra electron, allowing them to leap en masse from the surface of ring debris for brief periods, collectively forming the giant spokes that appear dark against the lit side of the rings and bright against the unlit side of the rings.

The researchers hypothesize that the conditions for the spokes to form are correlated to a decrease in the angle of the ring plane to the sun. "Because the rings are more open to the sun now than when Voyager flew by, the charging environment above the rings has prevented the formation of the spokes until very recently," the researchers wrote in Science.

Cassini first imaged a "puny version" of Saturn’s spoke rings from a distance of 98,000 miles in early September that were only about 2,200 miles in length and about 60 miles wide, said Horanyi. The team believes the spoke sighting may have been an "early bird" event.

As the ring plane angle decreases when Saturn is near its two seasonal equinoxes, the conditions appear to become more suitable for the formation of the eerie spokes, said Horanyi. Although Cassini currently is orbiting too close to the ring plane to make observations, the researchers expect the spoke activity to have returned by the time the spacecraft increases its inclination in July 2006.

Once the spokes are visible again, the research team believes there will be spoke activity for about eight years, based on fact that it takes Saturn about 30-Earth-years to complete one orbit around the sun, said Horanyi. The eight-year period should be followed by about six to seven years of a spoke hiatus, he said.

The dust grains levitated by plasma during spoke-forming periods are probably hovering less than 50 miles above the rings themselves and they scatter light from the sun differently than do the rings themselves, he said.

But there are still many questions about the spokes, said Horanyi. "We don’t know if they form by rapidly expanding, or if they form all at once," he said. During the Voyager mission, they were absent during one observation, but fully developed in a follow-up observation made just five minutes later, he said.

This is a weird phenomena we don’t have the full story on yet," said Horanyi.

Mihaly Horanyi | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>