Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn ring spokes may re-appear in July, says new U. of Colorado study

17.03.2006


Voyager 2 image of Saturn ring spokes. Image courtesy NASA/JPL.


The unusual spokes that appear fleetingly on the rings of Saturn only to disappear for years at a time may become visible again by July, according to a new study spearheaded by the University of Colorado at Boulder.

The spokes, which are up to 6,000 miles long and 1,500 miles in width, were first spotted 26 years ago by the Voyager spacecraft, said CU-Boulder Mihaly Horanyi of the Laboratory for Atmospheric and Space Physics. But when the Cassini spacecraft arrived at Saturn in July of 2004, the striking radial features that cut across Saturn’s ring plane were nowhere to be found -- an event that disappointed and puzzled many scientists, he said.

The Hubble Space Telescope occasionally observed the ring spokes in the late 1990s, said Horanyi, also a professor of physics at CU-Boulder. But the spokes gradually faded, a result of Saturn’s seasonal, orbital motion and its tilted axis of rotation that altered the light-scattering geometry.



"The spokes were switched off by the time Cassini arrived," said Horanyi. "We think it is a seasonal phenomena related to the sun rising and setting over the ring plane that changes the physical environment there, making it either friendly or hostile to their formation."

A paper on the subject appears the March 17 issue of Science magazine. The paper was authored doctoral student Colin Mitchell and Horanyi of CU-Boulder’s LASP, Ove Havnes of the University of Trosmo in Norway and Carolyn Porco of the Space Science Institute of Boulder.

The spokes are made up of tiny dust particles less than a micron in width -- about 1/50th the width of a human hair -- that collect electrostatic charges in the plasma environment of the rings and become subject to electrical and magnetic forces, said Horanyi.

The right conditions cause them to gain an extra electron, allowing them to leap en masse from the surface of ring debris for brief periods, collectively forming the giant spokes that appear dark against the lit side of the rings and bright against the unlit side of the rings.

The researchers hypothesize that the conditions for the spokes to form are correlated to a decrease in the angle of the ring plane to the sun. "Because the rings are more open to the sun now than when Voyager flew by, the charging environment above the rings has prevented the formation of the spokes until very recently," the researchers wrote in Science.

Cassini first imaged a "puny version" of Saturn’s spoke rings from a distance of 98,000 miles in early September that were only about 2,200 miles in length and about 60 miles wide, said Horanyi. The team believes the spoke sighting may have been an "early bird" event.

As the ring plane angle decreases when Saturn is near its two seasonal equinoxes, the conditions appear to become more suitable for the formation of the eerie spokes, said Horanyi. Although Cassini currently is orbiting too close to the ring plane to make observations, the researchers expect the spoke activity to have returned by the time the spacecraft increases its inclination in July 2006.

Once the spokes are visible again, the research team believes there will be spoke activity for about eight years, based on fact that it takes Saturn about 30-Earth-years to complete one orbit around the sun, said Horanyi. The eight-year period should be followed by about six to seven years of a spoke hiatus, he said.

The dust grains levitated by plasma during spoke-forming periods are probably hovering less than 50 miles above the rings themselves and they scatter light from the sun differently than do the rings themselves, he said.

But there are still many questions about the spokes, said Horanyi. "We don’t know if they form by rapidly expanding, or if they form all at once," he said. During the Voyager mission, they were absent during one observation, but fully developed in a follow-up observation made just five minutes later, he said.

This is a weird phenomena we don’t have the full story on yet," said Horanyi.

Mihaly Horanyi | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>