Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process builds electronic function into optical fiber

17.03.2006



These photos show a glass fiber with a bundle of semiconductor wires emanating from it. Each wire is just 2 microns in diameter--20 times smaller than a human hair. The glass fiber is glowing from blue laser light. One of the images shows the wire-packed glass fiber passing through the eye of a needle. Credit: Neil Baril, Penn State.



Optical fiber helped bring us the Internet, and silicon/germanium devices brought us microelectronics. Now, a joint team from Penn State University and the University of Southampton has developed a new way to combine these technologies. The team has made semiconductor devices, including a transistor, inside microstructured optical fibers. The resulting ability to generate and manipulate signals inside optical fibers could have applications in fields as diverse as medicine, computing, and remote sensing devices.

Optical fiber has proved to be the ideal medium for transmitting signals based on light, while crystalline semiconductors are the best way to manipulate electrons. One of the greatest current technological challenges is exchanging information between optics and electronics rapidly and efficiently. This new technique may provide the tools to cross the divide. The results of this research will be published in the 17 March edition of the journal Science.

"This advance is the basis for a technology that could build a large range of devices inside an optical fiber," said John Badding, associate professor of chemistry at Penn State University. While the optical fiber transmits data, a semiconductor device allows active manipulation of the light, including generating and detecting, amplifying signals, and controlling wavelengths. "If the signal never leaves the fiber, then it is faster, cheaper and more efficient," said Badding. "



"This fusion of two separate technologies opens the possibility of true optoelectronic devices that do not require conversion between optical and electronic signals," said Pier Sazio, senior research fellow in the Optoelectronics Research Centre at the University of Southampton (UK). "If you think of the fiber as a water main, this structure places the pumping station inside the pipe. The glass fiber provides the transmission and the semiconductor provides the function."

Beyond telecommunications, optical fibers are used in a wide range of technologies that employ light. "For example, in endoscopic surgery, by building a laser inside the fiber you might be able to deliver a wavelength that could not otherwise be used," said Badding.

The key breakthrough was the ability to form crystalline semiconductors that nearly fill the entire inside diameter, or pore, of very narrow glass capillaries. These capillaries are optical fibers--long, clear tubes that can carry light signals in many wavelengths simultaneously. When the tube is filled with a crystalline semiconductor, such as germanium, the semiconductor forms a wire inside the optical fiber. The combination of optical and electrical capabilities provides the platform for development of new optoelectronic devices.

The crystals were formed using chemical vapor deposition (CVD) to deposit germanium and other semiconductors inside the long, narrow pores of the hollow optical fiber. In the CVD process, a germanium compound is vaporized and then forced through the pores of the fiber at pressures as high as 1000 times atmospheric pressure and temperatures up to 500°C. A chemical reaction within the fiber allows germanium to coat the interior walls of the hollow fiber and then form crystals that grow inward. "The process works so perfectly that you can get a germanium tube that has an opening in the center of only 25 nanometers through the length of the fiber," said Sazio. "This is only a tiny fraction of the diameter of the fiber pore, so it is essentially a wire." This is the first demonstration of building crystalline structures, which are best for semiconductor devices, inside the pores of the capillaries.

The team has built a simple in-fiber transistor, and they point to the success of the Erbium Doped Fiber Amplifier, which was invented at Southampton in the late 1980s, to illustrate the transformational possibilities of this technology. By incorporating the chemical element erbium into the fiber, the Erbium Amplifier allows efficient transmission of data signals in transoceanic optical fibers. "Without that kind of device, it would be necessary to periodically convert the light to an electronic signal, amplify the signal, and convert it back to light, which is expensive and inefficient" said Sazio. " Since its inception, the Erbium Amplifier has made the internet possible in its current form."

Beyond the simple devices that this research has demonstrated, the research team sees the potential for the embedded semiconductors to carry optoelectronic applications to the next level. "At present you still have electrical switching at both ends of the optical fiber," says Badding. "If we can get to the point where the signal never leaves the fiber, it will be faster and more efficient. If we can actually generate signals inside a fiber, a whole range of optoelectronic applications become possible."

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>