Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Frequency comb’ spectroscopy proves to be powerful chemical analysis tool

17.03.2006


Physicists at JILA have designed and demonstrated a highly sensitive new tool for real-time analysis of the quantity, structure and dynamics of a variety of atoms and molecules simultaneously, even in minuscule gas samples. The technology could provide unprecedented capabilities in many settings, such as chemistry laboratories, environmental monitoring stations, security sites screening for explosives or biochemical weapons, and medical offices where patients’ breath is analyzed to monitor disease.


The new JILA technique uses infrared laser light in many different colors, or frequencies, to identify trace levels of different molecules at the same time. For example, water molecules (blue) and ammonia molecules (green) absorb light at very specific characteristic frequencies. The pattern of frequencies absorbed forms a "signature" for identifying the molecules and their concentrations.



Described in the March 17 issue of Science,* the new technology is an adaptation of a conventional technique, cavity ring-down spectroscopy, for identifying chemicals based on their interactions with light. The JILA system uses an ultrafast laser-based "optical frequency comb" as both the light source and as a ruler for precisely measuring the many different colors of light after the interactions. The technology offers a novel combination of a broad range of frequencies (or bandwidth), high sensitivity, precision and speed. A provisional patent application has been filed.

JILA is a joint institute of the National Institute of Standards and Technology (NIST), a non-regulatory agency of the U.S. Department of Commerce, and the University of Colorado at Boulder.


"What a frequency comb can do beautifully is offer a powerful combination of broad spectral range and fine resolution," says NIST Fellow Jun Ye, who led the work described in the paper. "The amount of information gathered with this approach was previously unimaginable. It’s like being able to see every single tree of an entire forest. This is something that could have tremendous industrial and commercial value."

Frequency combs are an emerging technology designed and used at JILA, NIST and other laboratories for frequency metrology and optical atomic clocks, and are being demonstrated in additional applications. NIST/JILA physicist John (Jan) Hall shared the 2005 Nobel Prize in physics in part for his contributions to the development of frequency combs [www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm]. In the application described in Science, the frequency comb is used to precisely measure and identify the light absorption signatures of many different atoms and molecules.

The JILA system described in Science offers exceptional performance for all four of the primary characteristics desired in a cutting-edge spectroscopic system:

  • The system currently spans 125,000 frequency components of light, or 100 nanometers (750-850 nm) in the visible and near-infrared wavelength range, enabling scientists to observe all the energy levels of a variety of different atoms and molecules simultaneously.
  • High resolution or precision allows scientists to separate and identify signals that are very brief or close together, such as individual rotations out of hundreds of thousands in a water molecule. The resolution can be tweaked to reach below the limit set by the thermal motion of gaseous atoms or molecules at room temperature.
  • High sensitivity--currently 1 molecule out of 100 million--enables the detection of trace amounts of chemicals or weak signals. With additional work, the JILA team foresees building a portable tool providing detection capability at the 1 part per billion level. Such a device might be used, for example, to analyze a patient’s breath to monitor diseases such as renal failure and cystic fibrosis.
  • A fast data-acquisition time of about 1 millisecond per 15 nm of bandwidth enables scientists to observe what happens under changing environmental conditions, and to study molecular vibrations, chemical reactions and other dynamics.

By comparison, conventional cavity ring-down spectroscopy offers comparable sensitivity but a narrow bandwidth of about 1 nanometer. A more sensitive "optical nose" technique developed at NIST can identify one molecule among 1 trillion others, but can analyze only one frequency of light at a time. Other methods, such as Fourier transform infrared spectroscopy, provide large bandwidths and high speed but are not sensitive enough to detect trace gases.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>