’Frequency comb’ spectroscopy proves to be powerful chemical analysis tool

The new JILA technique uses infrared laser light in many different colors, or frequencies, to identify trace levels of different molecules at the same time. For example, water molecules (blue) and ammonia molecules (green) absorb light at very specific characteristic frequencies. The pattern of frequencies absorbed forms a "signature" for identifying the molecules and their concentrations.

Physicists at JILA have designed and demonstrated a highly sensitive new tool for real-time analysis of the quantity, structure and dynamics of a variety of atoms and molecules simultaneously, even in minuscule gas samples. The technology could provide unprecedented capabilities in many settings, such as chemistry laboratories, environmental monitoring stations, security sites screening for explosives or biochemical weapons, and medical offices where patients’ breath is analyzed to monitor disease.

Described in the March 17 issue of Science,* the new technology is an adaptation of a conventional technique, cavity ring-down spectroscopy, for identifying chemicals based on their interactions with light. The JILA system uses an ultrafast laser-based “optical frequency comb” as both the light source and as a ruler for precisely measuring the many different colors of light after the interactions. The technology offers a novel combination of a broad range of frequencies (or bandwidth), high sensitivity, precision and speed. A provisional patent application has been filed.

JILA is a joint institute of the National Institute of Standards and Technology (NIST), a non-regulatory agency of the U.S. Department of Commerce, and the University of Colorado at Boulder.

“What a frequency comb can do beautifully is offer a powerful combination of broad spectral range and fine resolution,” says NIST Fellow Jun Ye, who led the work described in the paper. “The amount of information gathered with this approach was previously unimaginable. It’s like being able to see every single tree of an entire forest. This is something that could have tremendous industrial and commercial value.”

Frequency combs are an emerging technology designed and used at JILA, NIST and other laboratories for frequency metrology and optical atomic clocks, and are being demonstrated in additional applications. NIST/JILA physicist John (Jan) Hall shared the 2005 Nobel Prize in physics in part for his contributions to the development of frequency combs [www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm]. In the application described in Science, the frequency comb is used to precisely measure and identify the light absorption signatures of many different atoms and molecules.

The JILA system described in Science offers exceptional performance for all four of the primary characteristics desired in a cutting-edge spectroscopic system:

  • The system currently spans 125,000 frequency components of light, or 100 nanometers (750-850 nm) in the visible and near-infrared wavelength range, enabling scientists to observe all the energy levels of a variety of different atoms and molecules simultaneously.
  • High resolution or precision allows scientists to separate and identify signals that are very brief or close together, such as individual rotations out of hundreds of thousands in a water molecule. The resolution can be tweaked to reach below the limit set by the thermal motion of gaseous atoms or molecules at room temperature.
  • High sensitivity–currently 1 molecule out of 100 million–enables the detection of trace amounts of chemicals or weak signals. With additional work, the JILA team foresees building a portable tool providing detection capability at the 1 part per billion level. Such a device might be used, for example, to analyze a patient’s breath to monitor diseases such as renal failure and cystic fibrosis.
  • A fast data-acquisition time of about 1 millisecond per 15 nm of bandwidth enables scientists to observe what happens under changing environmental conditions, and to study molecular vibrations, chemical reactions and other dynamics.

By comparison, conventional cavity ring-down spectroscopy offers comparable sensitivity but a narrow bandwidth of about 1 nanometer. A more sensitive “optical nose” technique developed at NIST can identify one molecule among 1 trillion others, but can analyze only one frequency of light at a time. Other methods, such as Fourier transform infrared spectroscopy, provide large bandwidths and high speed but are not sensitive enough to detect trace gases.

Media Contact

Laura Ost EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors