Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Frequency comb’ spectroscopy proves to be powerful chemical analysis tool

17.03.2006


Physicists at JILA have designed and demonstrated a highly sensitive new tool for real-time analysis of the quantity, structure and dynamics of a variety of atoms and molecules simultaneously, even in minuscule gas samples. The technology could provide unprecedented capabilities in many settings, such as chemistry laboratories, environmental monitoring stations, security sites screening for explosives or biochemical weapons, and medical offices where patients’ breath is analyzed to monitor disease.


The new JILA technique uses infrared laser light in many different colors, or frequencies, to identify trace levels of different molecules at the same time. For example, water molecules (blue) and ammonia molecules (green) absorb light at very specific characteristic frequencies. The pattern of frequencies absorbed forms a "signature" for identifying the molecules and their concentrations.



Described in the March 17 issue of Science,* the new technology is an adaptation of a conventional technique, cavity ring-down spectroscopy, for identifying chemicals based on their interactions with light. The JILA system uses an ultrafast laser-based "optical frequency comb" as both the light source and as a ruler for precisely measuring the many different colors of light after the interactions. The technology offers a novel combination of a broad range of frequencies (or bandwidth), high sensitivity, precision and speed. A provisional patent application has been filed.

JILA is a joint institute of the National Institute of Standards and Technology (NIST), a non-regulatory agency of the U.S. Department of Commerce, and the University of Colorado at Boulder.


"What a frequency comb can do beautifully is offer a powerful combination of broad spectral range and fine resolution," says NIST Fellow Jun Ye, who led the work described in the paper. "The amount of information gathered with this approach was previously unimaginable. It’s like being able to see every single tree of an entire forest. This is something that could have tremendous industrial and commercial value."

Frequency combs are an emerging technology designed and used at JILA, NIST and other laboratories for frequency metrology and optical atomic clocks, and are being demonstrated in additional applications. NIST/JILA physicist John (Jan) Hall shared the 2005 Nobel Prize in physics in part for his contributions to the development of frequency combs [www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm]. In the application described in Science, the frequency comb is used to precisely measure and identify the light absorption signatures of many different atoms and molecules.

The JILA system described in Science offers exceptional performance for all four of the primary characteristics desired in a cutting-edge spectroscopic system:

  • The system currently spans 125,000 frequency components of light, or 100 nanometers (750-850 nm) in the visible and near-infrared wavelength range, enabling scientists to observe all the energy levels of a variety of different atoms and molecules simultaneously.
  • High resolution or precision allows scientists to separate and identify signals that are very brief or close together, such as individual rotations out of hundreds of thousands in a water molecule. The resolution can be tweaked to reach below the limit set by the thermal motion of gaseous atoms or molecules at room temperature.
  • High sensitivity--currently 1 molecule out of 100 million--enables the detection of trace amounts of chemicals or weak signals. With additional work, the JILA team foresees building a portable tool providing detection capability at the 1 part per billion level. Such a device might be used, for example, to analyze a patient’s breath to monitor diseases such as renal failure and cystic fibrosis.
  • A fast data-acquisition time of about 1 millisecond per 15 nm of bandwidth enables scientists to observe what happens under changing environmental conditions, and to study molecular vibrations, chemical reactions and other dynamics.

By comparison, conventional cavity ring-down spectroscopy offers comparable sensitivity but a narrow bandwidth of about 1 nanometer. A more sensitive "optical nose" technique developed at NIST can identify one molecule among 1 trillion others, but can analyze only one frequency of light at a time. Other methods, such as Fourier transform infrared spectroscopy, provide large bandwidths and high speed but are not sensitive enough to detect trace gases.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

Lipid nanodiscs stabilize misfolding protein intermediates red-handed

18.12.2017 | Life Sciences

Single-photon detector can count to 4

18.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>