Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atoms in new state of matter behave like Three Musketeers: All for one, one for all

17.03.2006


An international team of physicists has converted three normal atoms into a special new state of matter whose existence was proposed by Russian scientist Vitaly Efimov in 1970.



In this new state of matter, any two of the three atoms--in this case cesium atoms-- repel one another in close proximity. "But when you put three of them together, it turns out that they attract and form a new state," said Cheng Chin, an Assistant Professor in Physics at the University of Chicago.

Chin, along with 10 scientists led by Rudolf Grimm at the University of Innsbruck in Austria, report this development in the March 16 issue of the journal Nature. The paper describes the experiment in Grimm’s laboratory where for the first time physicists were able to observe the Efimov state in a vacuum chamber at the ultracold temperature of a billionth of a degree above absolute zero (minus 459.6 degrees Fahrenheit).


This new state behaves like the Borromean ring, a symbol of three interlocking circles that has historical significance in Italy. The Borromean concept also exists in physics, chemistry and mathematics.

"This ring means that three objects are entangled. If you pick up any one of them, the other two will follow. However, if you cut one of them off, the other two will fall apart," Chin said. "There is something magic about this number of three."

The Innsbruck experiment involved three cesium atoms, a soft metal used in atomic clocks, formed into a molecule that manifested the Efimov state. But in theory the Efimov state should apply universally to other sets of three particles at ultracold temperatures. "If you can create this kind of state out of any other type of particle, it’ll have exactly the same behavior," Chin said.

The finding may lead to the establishment of a new research specialty devoted to understanding the quantum mechanical behavior of just a few interacting particles, Grimm said. Quantum mechanics governs the interactions of atoms and subatomic particles, but is best understood when applied to systems consisting of two particles or of many particles.

A good understanding of systems that contain just a handful of particles still eludes scientists. That may change as scientists begin to produce laboratory experiments that simulate systems made of just three or four particles, like those found in the nucleus of an atom.

Now that the Efimov state has been achieved, scientists can aspire to engineer the very properties of matter, Chin said. The Innsbruck-Chicago team exerted total control over the atoms in the experiment, converting them into the Efimov state and back into normal atoms at will.

"This so-called quantum control over the fundamental properties of matter now seems feasible. We’re not limited to the properties of, say, aluminum, or the properties of the copper of these particles. We are really creating a new state in which we can control their properties."

Today, nanotechnology researchers can combine atoms in novel ways to form materials with interesting new properties, "but you are not changing the fundamental interactions of these atoms," Chin said. That can only be done at temperatures near absolute zero. "At the moment, I don’t see how this can be done at much higher temperatures," he said.

Chin began working with Grimm’s group as a visiting scientist at the University of Innsbruck from 2003 until 2005. He continued the collaboration after joining the University of Chicago faculty last year.

"Cheng was very excited about the prospects of observing Efimov physics in cesium already as a Ph.D. student at Stanford," Grimm said. The 1999 Stanford experiment, led by physicists Vladan Vuletic and Steven Chu, was conducted at one millionth of a degree above absolute zero. "Now we know that their sample was too hot" to observe the Efimov state, Grimm said.

Added Chin: "After working on cesium for many years, this is a dream come true for me."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>