Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy On Fire! Spitzer Reveals Stellar Smoke

17.03.2006


Smokin’ Hot Galaxy - This infrared image from NASA’s Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy, known as Messier 82 or the "Cigar galaxy," is in fact, smothered in smoky dust particles (red) blown out into space by the galaxy’s hot stars (blue).


Where there’s smoke, there’s fire ­ even in outer space. A new infrared image from NASA’s Spitzer Space Telescope shows a burning hot galaxy whose fiery stars appear to be blowing out giant billows of smoky dust.

The galaxy, called Messier 82 or the "Cigar" galaxy, was previously known to host a hotbed of young, massive stars. The new Spitzer image reveals, for the first time, the "smoke" surrounding those stellar fires.

"We’ve never seen anything like this," said Dr. Charles Engelbracht of the University of Arizona, Tucson. "This unusual galaxy has ejected an enormous amount of dust to surround itself with a cloud brighter than any we’ve seen around other galaxies."



The false-colored view (see http://www.spitzer.caltech.edu/Media) shows Messier 82, an irregular-shaped galaxy positioned on its side, as a diffuse bar of blue light. Fanning out from its top and bottom like the wings of a butterfly are huge red clouds of dust believed to contain a compound similar to car exhaust.

The smelly material, called polycyclic aromatic hydrocarbon, can be found on Earth in tailpipes, barbecue pits and other places where combustion reactions have occurred. In galaxies, the stuff is created by stars, whose winds and radiation blow the material out into space.

"Usually you see smoke before a fire, but we knew about the fire in this galaxy before Spitzer’s infrared eyes saw the smoke," said Dr. David Leisawitz, Spitzer program scientist at NASA Headquarters in Washington.

These hazy clouds are some of the biggest ever seen around a galaxy. They stretch out 20,000 light-years away from the galactic plane in both directions, far beyond where stars are found.

Previous observations of Messier 82 had revealed two cone-shaped clouds of very hot gas projecting outward below and above the center of galaxy. Spitzer’s sensitive infrared vision allowed astronomers to see the galaxy’s dust.

"Spitzer showed us a dust halo all around this galaxy," said Engelbracht. "We still don’t understand why the dust is all over the place and not cone-shaped."

Cone-shaped clouds of dust around this galaxy would have indicated that its central, massive stars had sprayed the dust into space. Instead, Engelbracht and his team believe stars throughout the galaxy are sending off the "smoke signals."

Messier 82 is located about 12 million light-years away in the Ursa Major constellation. It is undergoing a renaissance of star birth in its middle age, with the most intense bursts of star formation taking place at its core. The galaxy’s interaction with its neighbor, a larger galaxy called Messier 81, is the cause of all the stellar ruckus. Our own Milky Way galaxy is a less fiery place, with dust confined to the galactic plane.

The findings will appear in an upcoming issue of the Astrophysical Journal. Other authors who contributed significantly to this work are Praveen Kundurthy and Dr. Karl Gordon, both of the University of Arizona. The image was taken as a part of the Spitzer Infrared Nearby Galaxy Survey, which is led by Dr. Robert Kennicutt , also of the University of Arizona.

The Jet Propulsion Laboratory manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech. JPL is a division of Caltech.

Visible-light pictures of Messier 82 show a bar of light against a dark patch of space. Longer exposures of the galaxy have revealed cone-shaped clouds of hot gas above and below the galaxy’s plane. It took Spitzer’s three sensitive instruments to show that the galaxy is also surrounded by a huge, hidden halo of dust.

Of those instruments, Spitzer’s infrared spectrograph told astronomers that the dust contains a carbon-containing compound, called polycyclic aromatic hydrocarbon. This smoky molecule can be found on Earth in tailpipes, barbecue pits and other places where combustion reactions have occurred.

Messier 82 is located about 12 million light-years away in the Ursa Major constellation. It is viewed from its side, or edge on, so it appears as a thin cigar-shaped bar. The galaxy is termed a starburst because its shrouded core is a fiery hotbed of stellar birth. A larger nearby galaxy, called Messier 81, is gravitationally interacting with Messier 82, prodding it into producing the new stars.

This picture was taken by Spitzer’s infrared array camera as a part of the Spitzer Infrared Nearby Galaxy Survey. Blue indicates infrared light of 3.6 microns, green corresponds to 4.5 microns, and red to 5.8 and 8.0 microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8- and 8-micron images to enhance the visibility of the dust features. (Photo: NASA/JPL-Caltech/University of Arizona)

Lori Stiles | University of Arizona
Further information:
http://www.spitzer.caltech.edu/spitzer
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>