Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deriving the shape of the Galactic stellar disc

16.03.2006


An edge-on view of the ESO 510-G13 warped galaxy. Courtesy of NASA, the Hubble Heritage Team, and C. Conselice.


While analysing the complex structure of the Milky Way, an international team of astronomers from Italy and the United Kingdom has recently derived the shape of the Galactic outer stellar disc, and provided the strongest evidence that, besides being warped, it is at least 70% more extended than previously thought. Their findings will be reported in an upcoming issue of Astronomy & Astrophysics, and is a new step in understanding the large-scale structure of our Galaxy.

Using the 2MASS all-sky near infrared catalogue, Yazan Momany and his collaborators reconstructed the outer structure of the Galactic stellar disc, in particular, its warp. Their work will soon be published in Astronomy & Astrophysics. Observationally, the warp is a bending of the Galactic plane upwards in the first and second Galactic longitude quadrants (0

The disc of our Galaxy is made up of three major components: the stellar, the gaseous, and the interstellar dust components. The warping of the gas and dust component has been well established and documented. In particular, the gaseous component is known to be warped and to extend out to 25,000 parsecs (pc). In contrast, the true extent of this stellar warping is still being debated. Over the past years, there has been changing evidence of a difference in the warp amplitude between stars and gas. These studies have led to the idea that the Milky Way stellar disc is truncated beyond 14,000 pc from the Galactic centre.



The new analysis by Momany and his team provides the first clear and complete view of the outer stellar disc warp. They analyzed the distribution of over 115 million stars from the all-sky 2MASS catalogue that comprise the totality of the Galactic disc. Among the many different stellar types, M-giant stars were found to be the ideal stellar tracer for reconstructing the outer disc structure. They are, in fact, highly luminous but relatively cool and evolved stars, and these unique properties allow better determination of their distance. The analysis also shows that M-giants stars located at distances between 3,000 and of 17,000 pc from the Sun draw the same stellar warp signature. This means that a global and large-scale Milky Way feature has been identified to about 25,000 pc from the Galactic centre: the team thus clearly demonstrates that there is no truncation of the stellar disc beyond 14,000 pc. The figures below illustrate the shape of the Galactic outer stellar disc. Figure 2 shows the density maps as derived from the 2MASS M-giant sample at 14,000 pc from the Galactic centre. The presence of the warp is quite clear at both ends of the stellar disc. Figure 3 quantitatively shows the amplitude and orientation of the disc’s stellar warp as a function of the Galactic longitude. It also shows the consistency of the warp signature in the three disc components (gas, dust, and stars). It is a natural consequence of the close physical correlation between these three Galactic disc components, and proves once more the existence of a global and regular warp signature for the Galactic disc.

Last but not least, this new evidence of an extended and warped Milky Way stellar disc allows the team to solve a heated debate among astronomers. In the past years, astronomers have identified over-densities in the opposite direction to the Galactic centre. Located in the Galactic plane, they stretch over 100 degrees in Monoceros constellation. Known as the Monoceros Ring, this over-density was believed to be the remnant of a dwarf satellite galaxy cannibalised by the Milky Way. Another well-known example exists in the Sagittarius constellation of how the Milky Way halo is continuously building up by means of cannibalised smaller galaxies.

Recently, an over-density located in Canis Major was associated to the Monoceros Ring and identified as the core of a satellite galaxy currently being accreted into the Galactic plane. Momany and colleagues’ work, however, casts serious doubt on this scenario. They show that the Canis Major over-density is easily explained by the imprint of the Galactic warp. They may also be able to explain the Monoceros Ring by the complex structure of the outer disc, but they cannot offer a definite conclusion about this issue yet, as very little is known about the Monoceros Ring. It seems, however, that the Sagittarius dwarf remains the only example we have for the moment of how our Milky Way is still growing by cannibalising smaller galaxies.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release&niv3=PRaa200605

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>