Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eclipsing brown dwarfs provide new key to the star formation process

16.03.2006


Pity the brown dwarf. It’s too large to be a planet, but too small to be a star.

Although these “failed stars” are neither fish nor fowl, they play an important role in the cosmic scheme of things. Many astronomers think that they may actually be the most common product of the stellar formation process. So information about brown dwarfs can provide valuable new insights into the dynamic processes that produce stars out of collapsing whirlpools of interstellar dust and gas.

Because brown dwarfs are smaller and dimmer than true stars, it is only in recent years that improvements in telescope technology have allowed astronomers to catalog hundreds of faint objects that they think may be brown dwarfs. But to pick out the brown dwarfs from other types of faint objects, they need a way to estimate their masses, because mass is destiny for stars and star-like objects.



That is the reason why the discovery of an eclipsing pair of brown dwarfs in the Orion Nebula – reported in the March 16 issue of the scientific journal Nature – is important: It provides the first direct measurement of the mass, size and surface temperature of this type of object, information that will help astronomers better estimate the masses of the faint objects that they have found.

Moreover, the observations provide this critical information about a pair of brown dwarfs that are only a few million years old. The new observations confirm the theoretical prediction that brown dwarfs start out as star-like objects but shrink and cool and become increasingly planet-like as they age. Before now, the only brown dwarf whose mass has been directly measured was much older, dimmer and planet-like.

“This binary pair is a ‘Rosetta stone’ that will help unlock many of the mysteries regarding brown dwarfs,” says Keivan Stassun, assistant professor of astronomy at Vanderbilt University, who led the team of astronomers who made the new observations. “We understand how stars form in the crudest sense: They are formed when clouds of dust and gas collapse. But many of the details of the process remain a mystery, particularly the factors that determine what a star will weigh.”

The researchers made the observations with two sets of telescopes located in the Chilean Andes, about 100 miles north of Santiago: the Small and Moderate Aperture Research Telescope System (SMARTS) at Cerro Tololo Inter-American Observatory, operated by a consortium including Vanderbilt, and the International Gemini Observatory operated by the National Science Foundation.

As a category the brown dwarf is quite new. The existence of such failed stars was first proposed in the 1980’s, but it wasn’t until 2000 that a brown dwarf was detected unambiguously. While brown dwarfs were hypothetical objects, astronomers differentiated them from planets by the manner in which they formed: Brown dwarfs are formed the way a star is, from a collapsing cloud of interstellar dust and gas whereas planets are built up from the disks of dust and gas that surround forming stars. Once the first candidate brown dwarf was found, however, astronomers realized that they are very difficult to tell from planets, particularly when they have stellar companions. So a growing group of astronomers favor defining brown dwarfs as objects that range from 13 to 80 times the mass of Jupiter.

While participating in a survey of the Orion nebula, a stellar nursery only 1,500 light-years from earth, Stassun and his collaborators – professor Robert Mathieu, University of Wisconsin; and astronomer Jeff Valenti, Space Telescope Science Institute – found something that had never been seen before: a pair of brown dwarfs orbiting each other around an axis perpendicular to the line of sight to Earth.

The pair orbit each other so closely that they look like a single object when viewed from Earth. Because of their special orientation, however, the two objects periodically eclipse each other. These eclipses cause regular dips in the brightness of the light coming from their joint image. By precisely timing these occultations the astronomers were able to determine the orbits of the two objects. This information, along with Newton’s laws of motion, allowed Stassun’s team to calculate the mass of the two dwarfs.

“One is 55 times the mass of Jupiter and the other is 35 times Jupiter’s mass. The margin of error is only 10 percent, so they are clearly brown dwarfs,” Stassun reports.

In addition, the astronomers also were able to measure the size of the two dwarfs by measuring the width of the dips in their light curve. They prove to be remarkably large for their mass: about the same diameter as the sun. Because the pair are located in the Orion stellar nursery, the astronomers know that they are very young, less than 10 million years old. So their large sizes support the theoretical contention that brown dwarfs are quite star-like when they are created.

According to Stassun, an analysis of the light coming from the dwarf pair indicates that they have a reddish cast. Current models also predict that brown dwarfs should have “weather” – cloud-like bands and spots similar to those visible on Jupiter and Saturn.

By measuring variations in the light spectrum coming from the pair, the astronomers were also able to determine their surface temperatures. Theory predicts that the more massive member of a pair of brown dwarfs should have a higher surface temperature. But they found just the opposite. The heavier of the two has a temperature of 2,650 degrees Kelvin (4,310 degrees Fahrenheit) and the smaller is 2,790 degrees K (4,562 degrees F). These compare to the sun’s surface temperature of 5,900 degrees K (9,980 degrees F).

“One possible explanation is that the two objects have different origins and ages,” says Stassun. If that is the case, then it supports one of the outcomes of the latest efforts to simulate the star formation process. These simulations predict that brown dwarfs are created so close together that they are likely to disrupt each other’s formation.

This research was funded by the National Science Foundation.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>