Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice University researchers create ’nanorice’

15.03.2006


Nanoparticle’s shape could improve chemical sensing, biological imaging


Nanorice is made of non-conducting iron oxide called hematite that’s covered with gold. The core size and shell thickness vary slightly but the particles are about 20 times smaller than a red blood cell.



Who better to invent "nanorice" than researchers at Rice University? But marketing and whimsy weren’t what motivated the team of engineers, physicists and chemists from Rice’s Laboratory for Nanophotonics (LANP) to make rice-shaped particles of gold and iron oxide.

"On the nanoscale, the shape of a particle plays a critical role in how it interacts with light," said LANP Director Naomi Halas. "We were looking for a new shape that would combine the best properties of the two most optically useful shapes – spheres and rods. It’s just a coincidence that that shape turned out to look exactly like a grain of rice."


Nanoparticles like nanorice can be used to focus light on small regions of space. Rice’s scientists plan to capitalize on this by attaching grains of nanorice to scanning probe microscopes. By moving the grains next to proteins and unmapped features on the surfaces of cells, they hope to get a far clearer picture than what’s available with current technology.

The nanorice research will appear in the April 12 issue of Nano Letters. Halas will discuss the findings at 11:30 a.m. today at a press conference at the American Physical Society’s 2006 March Meeting in room 334 of the Baltimore Convention Center.

In form, nanorice is similar to nanoshells, a spherical nanoparticle Halas invented in 1998 that is currently being examined for possible applications in molecular imaging, cancer treatment, medical diagnostics and chemical sensing. Both nanorice and nanoshells are made of a non-conducting core that is covered by a metallic shell.

Halas’ investigations find that nanorice possesses far greater structural tunability than nanoshells and another commonly studied optical nanoparticle, the nanorod. In fact, tests indicate that nanorice is the most sensitive surface plasmon resonance (SPR) nanosensor yet devised.

Research over the past decade has shown that nanoscale objects can amplify and focus light in ways scientists never imagined. The "how" of this involves plasmons, ripples of waves in the ocean of electrons that flow constantly across the surfaces of metals. When light of a specific frequency strikes a plasmon that oscillates at a compatible frequency, the energy from the light is converted into electrical energy that propagates, as plasmons, through the nanostructure.

Changing the shape of a metal at the nanoscale allows engineers and scientists to modify the properties of these plasmon waves, controlling the way that the metal nanostructure responds to light. Because of this, metal nanostructures can have beautiful, vivid colors that depend on their shape. Some nanoscale structures -- like nanorice and nanoshells -- act as superlenses that can amplify light waves and focus them to spot sizes far smaller than a wavelength of light.

In January 2005, for example, Halas and colleagues showed that nanoshells were about 10,000 times more effective at Surface-enhanced Raman Scattering (SERS) than traditional methods. Raman scattering is a type of spectrographic technique used by medical researchers, drug designers, chemists and others to determine the precise chemical makeup of materials.

"Plasmon resonance ’hot spots’ formed at the junction between a pair of nanoparticles- called dimers- provide higher SERS intensity than single nanoshells," said co-author Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering. "Our computer models and experimental results show that the plasmon resonances of single grains of nanorice are on the same order of magnitude intensities as those obtained in junctions of nanoparticle dimers."

"The distinct advantage of the nanorice particle over nanoparticle dimers is that the electric field enhancements occur on open-ended surfaces of the particle that are much more accessible," said Halas, The Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "For SERS and SPR applications, we believe nanorice may have the field intensities needed to characterize biomolecules -- like proteins and DNA --that adsorb on the particle."

The nanorice core is made of non-conducting iron oxide and the outer covering of gold. The nanorice particles described in the Nano Letters paper were about 360 nanometers long and about 80 nanometers in diameter.

Phil Schewe | EurekAlert!
Further information:
http://www.rice.edu
http://www.aip.org

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>