Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice University researchers create ’nanorice’

15.03.2006


Nanoparticle’s shape could improve chemical sensing, biological imaging


Nanorice is made of non-conducting iron oxide called hematite that’s covered with gold. The core size and shell thickness vary slightly but the particles are about 20 times smaller than a red blood cell.



Who better to invent "nanorice" than researchers at Rice University? But marketing and whimsy weren’t what motivated the team of engineers, physicists and chemists from Rice’s Laboratory for Nanophotonics (LANP) to make rice-shaped particles of gold and iron oxide.

"On the nanoscale, the shape of a particle plays a critical role in how it interacts with light," said LANP Director Naomi Halas. "We were looking for a new shape that would combine the best properties of the two most optically useful shapes – spheres and rods. It’s just a coincidence that that shape turned out to look exactly like a grain of rice."


Nanoparticles like nanorice can be used to focus light on small regions of space. Rice’s scientists plan to capitalize on this by attaching grains of nanorice to scanning probe microscopes. By moving the grains next to proteins and unmapped features on the surfaces of cells, they hope to get a far clearer picture than what’s available with current technology.

The nanorice research will appear in the April 12 issue of Nano Letters. Halas will discuss the findings at 11:30 a.m. today at a press conference at the American Physical Society’s 2006 March Meeting in room 334 of the Baltimore Convention Center.

In form, nanorice is similar to nanoshells, a spherical nanoparticle Halas invented in 1998 that is currently being examined for possible applications in molecular imaging, cancer treatment, medical diagnostics and chemical sensing. Both nanorice and nanoshells are made of a non-conducting core that is covered by a metallic shell.

Halas’ investigations find that nanorice possesses far greater structural tunability than nanoshells and another commonly studied optical nanoparticle, the nanorod. In fact, tests indicate that nanorice is the most sensitive surface plasmon resonance (SPR) nanosensor yet devised.

Research over the past decade has shown that nanoscale objects can amplify and focus light in ways scientists never imagined. The "how" of this involves plasmons, ripples of waves in the ocean of electrons that flow constantly across the surfaces of metals. When light of a specific frequency strikes a plasmon that oscillates at a compatible frequency, the energy from the light is converted into electrical energy that propagates, as plasmons, through the nanostructure.

Changing the shape of a metal at the nanoscale allows engineers and scientists to modify the properties of these plasmon waves, controlling the way that the metal nanostructure responds to light. Because of this, metal nanostructures can have beautiful, vivid colors that depend on their shape. Some nanoscale structures -- like nanorice and nanoshells -- act as superlenses that can amplify light waves and focus them to spot sizes far smaller than a wavelength of light.

In January 2005, for example, Halas and colleagues showed that nanoshells were about 10,000 times more effective at Surface-enhanced Raman Scattering (SERS) than traditional methods. Raman scattering is a type of spectrographic technique used by medical researchers, drug designers, chemists and others to determine the precise chemical makeup of materials.

"Plasmon resonance ’hot spots’ formed at the junction between a pair of nanoparticles- called dimers- provide higher SERS intensity than single nanoshells," said co-author Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering. "Our computer models and experimental results show that the plasmon resonances of single grains of nanorice are on the same order of magnitude intensities as those obtained in junctions of nanoparticle dimers."

"The distinct advantage of the nanorice particle over nanoparticle dimers is that the electric field enhancements occur on open-ended surfaces of the particle that are much more accessible," said Halas, The Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "For SERS and SPR applications, we believe nanorice may have the field intensities needed to characterize biomolecules -- like proteins and DNA --that adsorb on the particle."

The nanorice core is made of non-conducting iron oxide and the outer covering of gold. The nanorice particles described in the Nano Letters paper were about 360 nanometers long and about 80 nanometers in diameter.

Phil Schewe | EurekAlert!
Further information:
http://www.rice.edu
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>