Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Janus particles offer new physics, new technology

15.03.2006


In Roman mythology, Janus was the god of change and transition, often portrayed with two faces gazing in opposite directions. At the University of Illinois at Urbana-Champaign, Janus particles are providing insight into the movement of molecules, and serving as the basis for new materials and sensors.



"By modifying the surface of colloidal particles into a Janus chemical compound, we can measure the rotational dynamics of single colloidal particles in suspension as well as at interfaces," said Steve Granick, a professor of materials science and engineering, chemistry and physics. "We can also take advantage of the particles’ two very dissimilar sides to create families of microsensors."

Using a metal-deposition technique, Granick and his research team -- graduate students Liang Hong and Steven Anthony, and postdoctoral research associate Huilin Tu -- make particles half-covered by metal, and generate geometrically symmetric but chemically asymmetric materials. Trapped inside the micron-size particles are fluorescent dyes, which can only be seen through the uncoated hemisphere, not through the metal-coated hemisphere.


"Because these colloidal particles are rotating, they twinkle as they move back and forth, ’swimming’ by Brownian motion," said Granick, who is also a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology. "By carefully monitoring the motion of the particles, we can now ask questions about that motion that were not possible before."

Individual particles can be tied together like strings of pearls. Using precision imaging and tracking techniques, the researchers can measure the movement as the strings tumble around. The particles can also be used as microprobes and microrheometers.

"We are continuing to explore the chemical modification of the metal surface to form new colloid-based materials," said Granick, who will describe his team’s work at the March Meeting of the American Physical Society, to be held at the Baltimore Convention Center, March 13-17. "We are also investigating the use of electrical fields and magnetic fields to manipulate the particles."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>