Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-breaking detector may aid nuclear inspections

15.03.2006


Scientists at the Commerce Department’s National Institute of Standards and Technology (NIST) have designed and demonstrated the world’s most accurate gamma ray detector, which is expected to be useful eventually in verifying inventories of nuclear materials and detecting radioactive contamination in the environment.


Silicon chip built by NIST researchers with 16 tiny gamma ray detectors that may help nuclear inspectors improve analysis of plutonium and other radioactive materials. Each detector is one millimeter square. Image credit: National Institute of Standards and Technology


The data plots above show detection of gamma rays with specific energies. Arrows point to energies identified with the new detector that are difficult to detect in the red plot made with a conventional detector. Image credit: National Institute of Standards and Technology, National Nuclear Security Agency, Los Alamos National Laboratory



The tiny prototype detector, described today at the American Physical Society national meeting in Baltimore, can pinpoint gamma ray emissions signatures of specific atoms with 10 times the precision of the best conventional sensors used to examine stockpiles of nuclear materials. The NIST tests, performed with different forms of plutonium at Los Alamos National Laboratory,* also show the prototype greatly clarifies the complex X-ray and gamma-ray emissions profile of plutonium.

Emissions from radioactive materials such as uranium or plutonium provide unique signatures that, if accurately measured, can indicate the age and enrichment of the material and sometimes its intended purpose or origin.


The 1-square-millimeter (mm) prototype collects only a small amount of radiation, but NIST and Los Alamos researchers are collaborating to make a 100-sensor array that could be deployed in the field, perhaps mounted on a cart or in a vehicle.

"The system isn’t planned as a primary detection tool," says NIST physicist Joel Ullom. "Rather, it is intended for detailed analysis of material flagged by other detectors that have larger collection area but less measurement accuracy." An array could be used by inspectors to determine, for example, whether plutonium is of a dangerous variety, whether nuclear fuel was made for energy reactors or weapons, or whether what appears to be radium found naturally in the environment is actually explosive uranium.

"People at Los Alamos are very excited about this work," says Michael Rabin, a former NIST post-doc who now leads a collaborating team at Los Alamos. The Los Alamos National Laboratory operates and improves the capability to handle nuclear materials and sends scientists to participate in United Nations nuclear inspection teams.

An array of the new sensors might give inspectors new capabilities, such as enabling them to determine the plutonium content of spent reactor fuel without handling the fuel or receiving reliable information from the reactor’s operators. Plutonium content can indicate whether a reactor is being used to produce weapons or electrical power.

The gamma ray detector is a variation on superconducting "transition edge" sensor technology pioneered at NIST laboratories in Boulder, Colo., for analysis of X-rays (for astronomy and semiconductor analysis applications) and infrared light (for astronomy and quantum communications). The cryogenic sensors absorb individual photons (the smallest particles of light) and measure the energy based on the resulting rise in temperature. The temperature is measured with a bilayer of normal metal (copper) and superconducting metal (molybdenum) that changes its resistance to electricity in response to the heat from the radiation.

To stop gamma rays, which have higher energy than infrared light and X-rays, the sensors need to be topped with an absorbent material. A layer of tin, 0.25 mm thick, is glued on top of each sensor to stop the gamma rays. The radiation is converted to heat, or vibrations in the lattice of tin atoms, and the heat drains into the sensor, where the temperature change is measured. NIST researchers have developed microfabrication techniques to attach absorbers across an array.

Researchers expect the 100-detector array to measure 1 square centimeter in size. The NIST team has already developed multiplexed readout systems to measure the signals from large sensor arrays, and recent advances in commercial refrigeration technology are expected to allow pushbutton operation of the system without liquid cryogens.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>