Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet from coldest spot in solar system has material from hottest places

15.03.2006


Scientists analyzing recent samples of comet dust have discovered minerals that formed near the sun or other stars. That means materials from the innermost part of the solar system could have traveled to the outer reaches, where comets formed.



"The interesting thing is we are finding these high-temperature minerals in materials from the coldest place in the solar system," said Donald Brownlee, a University of Washington astronomer who is principal investigator, or lead scientist, for NASA’s Stardust mission.

Among the finds in material brought back by Stardust is olivine, a mineral that is the primary component of the green sand found on some Hawaiian beaches. It is among the most common minerals in the universe, but finding it in comet Wild 2 could challenge a common view of how such crystalline materials form.


Olivine is a compound of iron, magnesium and other elements, in which the iron-magnesium mixture ranges from being nearly all iron to nearly all magnesium. The Stardust sample is primarily magnesium.

Many astronomers believe olivine crystals form from glass when it is heated close to stars, Brownlee said. One puzzle is why such crystals came from Wild 2, a comet that formed beyond the orbit of Neptune when the solar system began some 4.6 billion years ago.

"It’s certain such materials never formed inside this icy, cold body," Brownlee said.

The comet traveled the frigid environs of deep space until 1974, when a close encounter with Jupiter brought it to the inner solar system. Besides olivine, the dust from Wild 2 also contains exotic, high-temperature minerals rich in calcium, aluminum and titanium.

"I would say these materials came from the inner, warmest parts of the solar system or from hot regions around other stars," Brownlee said.

"The issue of the origin of these crystalline silicates still must be resolved. With our advanced tools, we can examine the crystal structure, the trace element composition and the isotope composition, so I expect we will determine the origin and history of these materials that we recovered from Wild 2."

Brownlee is among scientists presenting the first concrete findings from the Stardust sample this week at the annual Lunar and Planetary Science Conference in League City, Texas.

Stardust’s captured dust from comet Wild 2 in January 2004, and the sample-return capsule parachuted to the Utah desert on Jan. 15 to complete the seven-year mission. The samples from Wild 2 were taken to the National Aeronautics and Space Administration’s Johnson Space Center in Houston, and from there they have been sent to about 150 scientists around the world, who are using a variety of techniques to determine the properties of the comet grains.

The grains are very tiny, most much smaller than a hair’s width. But there appear to be thousands of them embedded in the unique glassy substance called aerogel that was used to snare the particles propelled from the body of the comet. A grain of 10 microns – one-hundredth of a millimeter – can be sliced into hundreds of samples for scientists to study.

"It’s not much, but still it’s so much that we’re almost overwhelmed," Brownlee said, noting that his lab has only worked on two particles so far. "The first grain we worked on, we haven’t even cut into the main part of the particle yet."

The material, which came from the very outer edges of the solar system, has been preserved since the start of the solar system in the deep freeze of space 50 times farther away from the sun than Earth is. Brownlee believes the material will provide key information about how the solar system was formed.

"A fundamental question is how much of the comet material came from outside the solar system and how much of it came from the solar nebula, from which the planets were formed," he said. "We should be able to answer that question eventually."

Vince Stricherz | EurekAlert!
Further information:
http://www.astro.washington.edu
http://www.nasa.gov/stardust

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>