Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet from coldest spot in solar system has material from hottest places

15.03.2006


Scientists analyzing recent samples of comet dust have discovered minerals that formed near the sun or other stars. That means materials from the innermost part of the solar system could have traveled to the outer reaches, where comets formed.



"The interesting thing is we are finding these high-temperature minerals in materials from the coldest place in the solar system," said Donald Brownlee, a University of Washington astronomer who is principal investigator, or lead scientist, for NASA’s Stardust mission.

Among the finds in material brought back by Stardust is olivine, a mineral that is the primary component of the green sand found on some Hawaiian beaches. It is among the most common minerals in the universe, but finding it in comet Wild 2 could challenge a common view of how such crystalline materials form.


Olivine is a compound of iron, magnesium and other elements, in which the iron-magnesium mixture ranges from being nearly all iron to nearly all magnesium. The Stardust sample is primarily magnesium.

Many astronomers believe olivine crystals form from glass when it is heated close to stars, Brownlee said. One puzzle is why such crystals came from Wild 2, a comet that formed beyond the orbit of Neptune when the solar system began some 4.6 billion years ago.

"It’s certain such materials never formed inside this icy, cold body," Brownlee said.

The comet traveled the frigid environs of deep space until 1974, when a close encounter with Jupiter brought it to the inner solar system. Besides olivine, the dust from Wild 2 also contains exotic, high-temperature minerals rich in calcium, aluminum and titanium.

"I would say these materials came from the inner, warmest parts of the solar system or from hot regions around other stars," Brownlee said.

"The issue of the origin of these crystalline silicates still must be resolved. With our advanced tools, we can examine the crystal structure, the trace element composition and the isotope composition, so I expect we will determine the origin and history of these materials that we recovered from Wild 2."

Brownlee is among scientists presenting the first concrete findings from the Stardust sample this week at the annual Lunar and Planetary Science Conference in League City, Texas.

Stardust’s captured dust from comet Wild 2 in January 2004, and the sample-return capsule parachuted to the Utah desert on Jan. 15 to complete the seven-year mission. The samples from Wild 2 were taken to the National Aeronautics and Space Administration’s Johnson Space Center in Houston, and from there they have been sent to about 150 scientists around the world, who are using a variety of techniques to determine the properties of the comet grains.

The grains are very tiny, most much smaller than a hair’s width. But there appear to be thousands of them embedded in the unique glassy substance called aerogel that was used to snare the particles propelled from the body of the comet. A grain of 10 microns – one-hundredth of a millimeter – can be sliced into hundreds of samples for scientists to study.

"It’s not much, but still it’s so much that we’re almost overwhelmed," Brownlee said, noting that his lab has only worked on two particles so far. "The first grain we worked on, we haven’t even cut into the main part of the particle yet."

The material, which came from the very outer edges of the solar system, has been preserved since the start of the solar system in the deep freeze of space 50 times farther away from the sun than Earth is. Brownlee believes the material will provide key information about how the solar system was formed.

"A fundamental question is how much of the comet material came from outside the solar system and how much of it came from the solar nebula, from which the planets were formed," he said. "We should be able to answer that question eventually."

Vince Stricherz | EurekAlert!
Further information:
http://www.astro.washington.edu
http://www.nasa.gov/stardust

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>