Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When repulsive particles stick together – A new angle on clustering

14.03.2006


Even when they mutually repel each other, material particles in a solution can still form clusters. Details on the conditions necessary for this seemingly contradictory, phenomenon have now been published, following a project supported by the Austrian Science Fund FWF. Though they come from the realm of theoretical physics these findings may be very important for understanding of the ordering of polymer-like entities — and increase the standing of the fledgling field of soft matter physics in Austria.



Milk and mayonnaise, paints and inks, proteins and DNA are all examples of what is known as "soft matter". It is only recently that their physical characteristics have been systematically investigated, often with surprising outcomes. One such result has now been published by a group led by Prof. Gerhard Kahl of the Institute of Theoretical Physics at the Vienna University of Technology.

Hard Facts on Soft Matter


"Intuitively, you would only expect particles in a fluid to aggregate when they attract each other," explained Prof. Kahl, "but we have been able to show that this needn’t always be the case. Even particles that completely repel each other can form clusters." The conditions necessary for this can be created by a particular type of soft matter, known as colloidal dispersions. In such systems, relatively large particles (e.g. polymers) are dissolved in a solvent made up of far smaller particles.

Together with colleagues at the Universities of Vienna and Düsseldorf, the team has now carried out computations on these types of solutions and has clearly shown that particles which repel each other can still aggregate, provided that two conditions are met. Firstly, the particles must be able to overlap each other and, secondly, increasing the distance between them must lead to a rapid reduction in the strength of the repulsion.

If these conditions are fulfilled, then the seemingly contradictory behaviour of the particles can be observed. Mag. Bianca Mladek and Dr. Dieter Gottwald, both members of Prof. Kahl’s team, have used complex computer simulations to confirm their surprising predictions. The strong agreement between the theoretical results and computer simulations convinced the referees, leading to publication in the prestigious Physical Review Letters journal.

Crystals under Pressure

The behaviour of particles when subjected to pressure yielded further unexpected results. Prof. Kahl commented: "Under high pressure, the clusters arrange themselves into crystals. We were even more surprised with the findings of further investigations which showed that the spacing between the ordered crystalline clusters remains constant when compressed further — a characteristic which is made possible by the aggregation of more and more particles in the clusters." These findings contrast with the behaviour of other ordered systems, such as ordinary crystalline metals, where the lattice spacings decrease under pressure.

Due to the high complexity of colloidal dispersions, such computations require certain mathematical tricks. Outlining the methodology, Prof. Kahl explained: "Statistical mechanics is the fundamental theory to describe soft matter behaviour. However, the large number of degrees of freedom of the larger particles in the dispersions posed a formidable computational problem. Through appropriate averaging we were able to dramatically reduce the number of degrees of freedom, so that the behaviour of the particles would only depend on a small number of coordinates."

Prof. Kahl believes that the findings, some of which are highly unexpected, show that nature offers a wide variety of solutions for the optimal energetic ordering of particles, many of which are still unknown. The FWF project will not only contribute towards unlocking some of these secrets, but will also help put the new field of soft matter research on a firm footing in Austria.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/press/pv200603-en.html

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>