Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When repulsive particles stick together – A new angle on clustering

14.03.2006


Even when they mutually repel each other, material particles in a solution can still form clusters. Details on the conditions necessary for this seemingly contradictory, phenomenon have now been published, following a project supported by the Austrian Science Fund FWF. Though they come from the realm of theoretical physics these findings may be very important for understanding of the ordering of polymer-like entities — and increase the standing of the fledgling field of soft matter physics in Austria.



Milk and mayonnaise, paints and inks, proteins and DNA are all examples of what is known as "soft matter". It is only recently that their physical characteristics have been systematically investigated, often with surprising outcomes. One such result has now been published by a group led by Prof. Gerhard Kahl of the Institute of Theoretical Physics at the Vienna University of Technology.

Hard Facts on Soft Matter


"Intuitively, you would only expect particles in a fluid to aggregate when they attract each other," explained Prof. Kahl, "but we have been able to show that this needn’t always be the case. Even particles that completely repel each other can form clusters." The conditions necessary for this can be created by a particular type of soft matter, known as colloidal dispersions. In such systems, relatively large particles (e.g. polymers) are dissolved in a solvent made up of far smaller particles.

Together with colleagues at the Universities of Vienna and Düsseldorf, the team has now carried out computations on these types of solutions and has clearly shown that particles which repel each other can still aggregate, provided that two conditions are met. Firstly, the particles must be able to overlap each other and, secondly, increasing the distance between them must lead to a rapid reduction in the strength of the repulsion.

If these conditions are fulfilled, then the seemingly contradictory behaviour of the particles can be observed. Mag. Bianca Mladek and Dr. Dieter Gottwald, both members of Prof. Kahl’s team, have used complex computer simulations to confirm their surprising predictions. The strong agreement between the theoretical results and computer simulations convinced the referees, leading to publication in the prestigious Physical Review Letters journal.

Crystals under Pressure

The behaviour of particles when subjected to pressure yielded further unexpected results. Prof. Kahl commented: "Under high pressure, the clusters arrange themselves into crystals. We were even more surprised with the findings of further investigations which showed that the spacing between the ordered crystalline clusters remains constant when compressed further — a characteristic which is made possible by the aggregation of more and more particles in the clusters." These findings contrast with the behaviour of other ordered systems, such as ordinary crystalline metals, where the lattice spacings decrease under pressure.

Due to the high complexity of colloidal dispersions, such computations require certain mathematical tricks. Outlining the methodology, Prof. Kahl explained: "Statistical mechanics is the fundamental theory to describe soft matter behaviour. However, the large number of degrees of freedom of the larger particles in the dispersions posed a formidable computational problem. Through appropriate averaging we were able to dramatically reduce the number of degrees of freedom, so that the behaviour of the particles would only depend on a small number of coordinates."

Prof. Kahl believes that the findings, some of which are highly unexpected, show that nature offers a wide variety of solutions for the optimal energetic ordering of particles, many of which are still unknown. The FWF project will not only contribute towards unlocking some of these secrets, but will also help put the new field of soft matter research on a firm footing in Austria.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/press/pv200603-en.html

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>