Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars under the spotlight again

14.03.2006


Relieved UK scientists are celebrating the news that NASA’s Mars Reconnaissance Orbiter (MRO) appears to have smoothly entered Mars orbit on Friday night (March 10th). Entering orbit is one of the most critical times for a space mission and Friday night’s manoeuvre managed to boost the tension for all as it took place on the far side of the Red Planet – so no news of the progress could be received on Earth during the critical phase.

UK scientists, from Oxford, Cardiff and Reading Universities are involved in the Mars Climate Sounder (MCS) instrument – essentially a weather station for Mars. It will profile the atmosphere of Mars detecting vertical variation in temperature, dust and water vapour concentration. Two previous versions of this instrument were lost with the ill-fated Mars Observer and Mars Climate Orbiter missions.

Professor Fred Taylor of Oxford University is delighted to have this nail-biting milestone out of the way. He says “Mars approach and orbit insertion is the most risky part of the mission. That is when we lost the last two spacecraft that were carrying our Climate Sounder instrument to Mars, in 1991 and 1999. Successfully achieving orbit this time means that we will be able to start taking some preliminary observations of the Martian atmosphere as early as 20th March.”



He adds “However, MRO will still be in a very elongated orbit then, and will not achieve the circular orbit from which we get the best observations for another six months. Changing the orbit involves the spacecraft dipping into the upper atmosphere of Mars at its closest approach each orbit, using the drag to reduce its speed a little at a time. This ’aerobraking’ is also a risky manoeuvre, but not as heart-stopping as arrival at Mars.”

The main aim of the MRO mission is to seek out the history of water on Mars. This will be accomplished by a suite of six science instruments, 3 engineering experiments and 2 science facility experiments. They will zoom in for extreme close up images of the Martian surface, analyse minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere and monitor the daily global weather.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>