Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create a conveyer belt for magnetic flux vortices in superconductors

13.03.2006


If blown up in size, it would not have a chance in the car factory, but the microscopic conveyer belt built by Simon Bending’s team in the Department of Physics at the University of Bath and collaborators in Japan and the USA, could just be the next big thing for improving devices relying on the elusive properties of superconductors (Nature Materials, Advanced Online Publication March 12 2006). It’s not your standard rubber band on cylinders though – it moves in an erratic way, a quick jolt to the left, a smooth slide to the right. Who would want to be on such a thing?



Tiny swirls of electric currents, it seems. These so-called vortices are the closest things to ‘hurricanes’ for the superconducting researcher and engineer, and no less threatening. That’s because the zero resistance to current flow in even the best superconductors breaks down once vortices enter and start to move around. Their motion can also lead to unpredictable ‘noise’ if it takes place near the most sensitive regions of superconducting devices. Bending has now shown that it is possible to move vortices around inside a superconductor almost at will using his shaky conveyer belt. In this way they can either be removed entirely or at least left where they cause the least harm.

The asymmetry in its movement is the key to success, since it ensures that the vortices all move in one direction, even though the belt itself moves back and forth. The reason behind this is that the vortices can only follow along during the smooth slides to the right, and not during the jolts in the other direction. The conveyer belt thus acts in some sense as a rectifier, just like the diodes known from electronics.


The mind-boggling part is now that the conveyer belt is assembled out of a line of vortices itself, created and controlled by a time-varying magnetic field. As the researchers show, this way “bad” vortices can be completely removed out of targeted regions inside the superconductor, and the vortices induced to create the conveyer belt can be readily removed from the sample afterwards if need be.

Using this trick, superconducting devices, such as filters for telecommunications or ultra-sensitive magnetic field probes, could be improved by removing vortices - naturally caused by the earth’s magnetic field or man-made disturbances – from regions critical to device operation.

Bending’s team consisted of fellow researcher David Cole, and theoretical collaborators Sergey Savel’ev and Franco Nori from RIKEN (Japan) and the Universities of Michigan and Loughborough, as well as scientists from the Universities of Tokyo and Manchester.

Prof. Simon Bending | alfa
Further information:
http://www.bath.ac.uk

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>