Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create a conveyer belt for magnetic flux vortices in superconductors

13.03.2006


If blown up in size, it would not have a chance in the car factory, but the microscopic conveyer belt built by Simon Bending’s team in the Department of Physics at the University of Bath and collaborators in Japan and the USA, could just be the next big thing for improving devices relying on the elusive properties of superconductors (Nature Materials, Advanced Online Publication March 12 2006). It’s not your standard rubber band on cylinders though – it moves in an erratic way, a quick jolt to the left, a smooth slide to the right. Who would want to be on such a thing?



Tiny swirls of electric currents, it seems. These so-called vortices are the closest things to ‘hurricanes’ for the superconducting researcher and engineer, and no less threatening. That’s because the zero resistance to current flow in even the best superconductors breaks down once vortices enter and start to move around. Their motion can also lead to unpredictable ‘noise’ if it takes place near the most sensitive regions of superconducting devices. Bending has now shown that it is possible to move vortices around inside a superconductor almost at will using his shaky conveyer belt. In this way they can either be removed entirely or at least left where they cause the least harm.

The asymmetry in its movement is the key to success, since it ensures that the vortices all move in one direction, even though the belt itself moves back and forth. The reason behind this is that the vortices can only follow along during the smooth slides to the right, and not during the jolts in the other direction. The conveyer belt thus acts in some sense as a rectifier, just like the diodes known from electronics.


The mind-boggling part is now that the conveyer belt is assembled out of a line of vortices itself, created and controlled by a time-varying magnetic field. As the researchers show, this way “bad” vortices can be completely removed out of targeted regions inside the superconductor, and the vortices induced to create the conveyer belt can be readily removed from the sample afterwards if need be.

Using this trick, superconducting devices, such as filters for telecommunications or ultra-sensitive magnetic field probes, could be improved by removing vortices - naturally caused by the earth’s magnetic field or man-made disturbances – from regions critical to device operation.

Bending’s team consisted of fellow researcher David Cole, and theoretical collaborators Sergey Savel’ev and Franco Nori from RIKEN (Japan) and the Universities of Michigan and Loughborough, as well as scientists from the Universities of Tokyo and Manchester.

Prof. Simon Bending | alfa
Further information:
http://www.bath.ac.uk

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>