Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn’s moon is source of solar system’s largest planetary ring

13.03.2006


Saturn’s moon Enceladus is the source of Saturn’s E-ring, confirms research published today.



Writing in the journal Science, scientists show how a plume of icy water vapour bursting out of the South Pole of Enceladus replenishes the water particles that make up the E-ring and creates a dynamic water-based atmosphere around the small moon. The E-ring is Saturn’s outermost ring and is composed of microscopic particles. It is very diffuse and stretches between the orbit of two of Saturn’s moons, Mimas and Titan.

Scientists discovered the dynamic atmosphere during three separate fly-bys of Enceladus by the Cassini spacecraft in February, March and July 2005. Cassini Huygens is a joint NASA/ESA mission to study the Saturnian system.


The team working on results from the magnetometer instrument were surprised to discover what they believed was an atmosphere on their first fly-by, 1176km from the moon’s surface. After a second flyby at 500km confirmed their observations, they persuaded the Cassini Project to take the next flyby much closer to Enceladus in order to investigate further.

On this flyby, at 175km, measurements from all the different instruments on the spacecraft confirmed the presence of an atmosphere. Later remote sensing observations of the moon revealed a plume of water vapour coming from the moon’s South Pole.

The atmosphere was also seen to change between the flybys, with a particularly extended atmosphere observed during the first one and a more concentrated atmosphere seen during subsequent flybys. The team believe that changing levels of activity by the plume at the South Pole were causing these changes in the atmosphere.

Professor Michele Dougherty, from Imperial College London’s Department of Space and Atmospheric Physics, Principal Investigator on Cassini’s magnetometer instrument and lead author of one of the papers, said: “When we observed signatures of an atmosphere on the first distant flyby we were very surprised because it was so unexpected to observe such signatures so far away from the moon.

“It was extremely exciting to have all the other instruments confirm our initial discovery, particularly when it was found that the atmosphere was changing from flyby to flyby and was closely linked with the subsequent plume observations at the South Pole. In addition this discovery clearly shows the importance of having a multi-instrument spacecraft such as Cassini since it enables us to combine a whole range of different data sets thereby allowing us to gain a much better overall understanding of complex physical systems.

Measurements of the temperature of Enceladus showed that, surprisingly, there is a concentration of heat around the South Pole, with the hottest point located over one of the fractures in the planet’s surface. The scientists believe that this heat signature shows internal processes within Enceladus causing the icy plume, by heating the moon’s ice.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/enceladus_plume.asp

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>