Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-breaking luminosity boosts discovery potential at Fermilab’s Tevatron collider

08.03.2006


The record-breaking performance of the Tevatron collider at the Department of Energy’s Fermi National Accelerator Laboratory is pushing the search for dark matter, supersymmetric particles and extra dimensions to new limits. Repeatedly smashing peak luminosity records, the Tevatron has created record numbers of proton-antiproton collisions that provide the means to unveil the secrets of the universe. Accelerator experts at the lab announced today (March 2) that in only 14 months the Tevatron collider has produced almost five times the data sample collected during four years of Collider Run I (1992-1996), which led to the discovery of the top quark at Fermilab.



Since restarting the Tevatron collider after a scheduled shutdown in December 2004, the collider has produced an integrated luminosity of 872 inverse picobarns-a measure for the number of collisions achieved. Two collider experiments, CDF and DZero, will present new results based on these datasets in the upcoming months.

"High luminosity is the name of the game for particle accelerators," said DZero co-spokesperson Terry Wyatt, University of Manchester. "We are in a great position to make some exciting discoveries with the data we have. With the prospect of doubling the dataset in 2006 and again in 2007, and with 8,000 inverse picobarns expected by the end of Collider Run II, there is huge future potential."


Following extensive upgrades, the high-energy Tevatron collider racked up a series of records in 2005 (see footnote), doubling the average peak luminosity-or beam brightness-and raising the world record for peak luminosity at a hadron collider to 17x1031 inverse centimeter square per second. A scheduled shutdown, from the end of February to the middle of June, 2006, is expected to boost the Tevatron performance even further.

Particle physics at colliders is strikingly similar to shooting pool (a.k.a. pocket billiards): the greater the number of collisions created, the greater the likelihood of success. But while one billiard ball classically colliding with another billiard ball always adds up to two billiard balls, the near-light-speed quantum environment of E=mc2 changes the picture completely for particle collisions.

"Imagine a car crash," said Steve Holmes, Associate Director for Accelerators at Fermilab. "Two 2,500-pound Minis run into each other and, instead of a fender rattling to the pavement, a 6,500-pound Hummer pops out. The more collisions we produce, the better the chance we have of finding something rare."

The Tevatron uses superconducting magnets to steer protons and antiprotons around a 4-mile ring, creating collisions at the world record energy of close to 2 trillion electron volts (TeV). The challenge in creating the largest possible number of collisions is to produce as many antiprotons as possible and to squeeze them across the smallest achievable area over the longest possible span of time.

Tevatron luminosity depends on having roughly equal numbers of protons and antiprotons in the colliding beams. Producing protons is easy, by particle physics standards: remove the electrons from hydrogen molecules, and you have single protons. Producing antiprotons is not easy, by any standard: colliding beams of protons with a fixed target made of nickel, with every million collisions producing about 18 antiprotons. Ultimately, Tevatron luminosity depends on the number of antiprotons available for collisions.

"In the past 14 months, the peak production rate for antiprotons has increased substantially, from 150 billion antiprotons per hour to 200 billion," said Roger Dixon, head of the Fermilab Accelerator Division. "We fully integrated the Recycler antiproton storage ring into our accelerator operations, and we greatly increased the antiproton beam density by implementing electron cooling."

Fermilab spent four years and $260 million to upgrade its accelerators and detectors, from 1996 to 2000. When the lab started Tevatron Collider Run II in March 2001, the progress on luminosity was sluggish. To improve the performance, accelerator experts focused on increasing the antiproton production rate; providing a third stage of antiproton cooling (concentrating the beam using the new Recycler storage ring); and increasing the transfer efficiency of antiprotons to the Tevatron. The result of these steps: more collisions than ever before, and the best prospects for scientific discoveries.

There is no time like the present for Fermilab to make big news with its luminosity improvements. The Large Hadron Collider (LHC) at the European laboratory CERN will be turning on in 2007, with collisions at an energy seven times higher than the Tevatron can produce. Boosting the Tevatron luminosity enhances Fermilab’s chances for discoveries before the LHC creates a significant number of collisions.

"We know that the LHC will assume the high-energy frontier once it is operational, but we also know that discoveries are the best way to position ourselves at the forefront of the field and help us to secure future projects," says Fermilab Director Pier Oddone. "The Fermilab luminosity upgrades will take us there."

Details on the luminosity upgrades as well as information on the scientific goals of Collider Run II are available online at: http://www.fnal.gov/pub/today/luminosityseries/index.html

Fermilab is a national laboratory funded by the Office of Science of the U.S. Department of Energy, operated by Universities Research Association, Inc.

Footnote: Between December 2004 and February 2006, the average peak luminosity of the Tevatron collider doubled from 7x1031 cm-2sec-1 to 14x1031 cm-2sec-1. Two charts illustrating the series of luminosity records set during this time period can be found at: http://www.fnal.gov/pub/now/tevlum.html

Kurt Riesselmann | EurekAlert!
Further information:
http://www.fnal.gov
http://www.fnal.gov/pub/today/luminosityseries/index.html
http://www.fnal.gov/pub/now/tevlum.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>