Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hurricanes, other vortices seize energy via ’hostile takeovers’


Research could lead to better understanding of typhoons, oceanic flows

For decades, scientists who study hurricanes, whirlpools and other large fluid vortices have puzzled over precisely how these vast swirling masses of gas or liquid sustain themselves. How do they acquire the energy to keep moving? The most common theory sounded like it was lifted from Wall Street: The large vortices collect power as smaller vortices merge and combine their assets, in the same way that small companies join forces to create a mega-corporation.

But researchers from The Johns Hopkins University and Los Alamos National Laboratory now believe the better model is a much different business tactic: the hostile takeover. Working with theoretical analysis, computer simulations and lab experiments, the team has concluded that large fluid vortices raid their smaller neighbors in an energy grab and then leave their depleted victims either to wither away or to renew their resources by draining still smaller vortices.

The findings were published in the March 3 issue of the journal Physical Review Letters. "This discovery is important because it could lead to a better understanding of how hurricanes and large ocean eddies form," said Shiyi Chen, an author of the paper. "It should also help us to create better computer models to make more accurate predictions about these conditions."

Chen is a professor in the Department of Mechanical Engineering at Johns Hopkins, where he occupies the Alonzo G. Decker Jr. Chair in Engineering and Science. He supervised the computer simulations in this two-and-a-half-year research project.

The team looked at large energetic vortex structures that form in irregular or turbulent two-dimensional flows of gas or liquid. Common examples are the Red Spot on Jupiter and hurricanes or typhoons on Earth. The researchers wanted to figure out how energy is transferred from smaller vortices to these large-scale circulation patterns. The basic phenomenon, called "inverse energy cascade," was predicted almost 40 years ago by pioneering turbulence theorist Robert H. Kraichnan. However, the dynamical mechanism underlying the inverse cascade has remained obscure. Does it occur, as some scientists suggested, through a merger of small vortices to form a new larger one?

"We went into this with an open mind, but we found that the popular idea of mergers was not correct," said Gregory Eyink, a Johns Hopkins professor of applied mathematics and statistics and currently the 2006 Ulam Scholar at Los Alamos Laboratory’s Center for Nonlinear Studies. He served as the primary theorist in the project and was an author of the journal article. "We found that such mergers are very rare."

He said the energy transfer actually occurs through a process described as a "thinning mechanism."

"You have a large vortex spinning around, with a smaller one inside," Eyink said. "The large vortex has a shearing effect on the smaller one, like cake batter being stirred. The large-scale vortex acts like a giant mixer, stretching and thinning out the smaller one, transferring its energy into the larger vortex. The large-scale vortex actually acts like a vampire, sucking the energy out of the smaller one."

This phenomenon sustains a steady-state inverse energy cascade. "We end up with a group of large predator vortices preying on smaller ones, which in turn prey on smaller ones still, forming a food-chain of vortices," Eyink said.

Through computer modeling at Johns Hopkins and laboratory experiments at Los Alamos on thin salt-water layers, the scientists were able to observe the physical processes and measure the energy transfer. This confirmed their theory that an energy transfer by stretching of small-scale vortices is what sustains large-scale vortices.

"This is the first time a quantitative connection has been made between the process of vortex-thinning and inverse energy cascade," said Robert Ecke, director of the Center for Nonlinear Studies at Los Alamos, an author of the journal article and supervisor of the lab experiments.

Phil Sneiderman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>