Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists capture the speediest ever motion in a molecule

03.03.2006


The fastest ever observations of protons moving within a molecule open a new window on fundamental processes in chemistry and biology, researchers report today in the journal Science.



Their capturing of the movements of the lightest and therefore speediest components of a molecule will allow scientists to study molecular behaviour previously too fast to be detected. It gives a new in-depth understanding of how molecules behave in chemical processes, providing opportunities for greater study and control of molecules, including the organic molecules that are the building blocks of life.

The high speed at which protons can travel during chemical reactions means their motion needs to be measured in units of time called ’attoseconds’, with one attosecond equating to one billion-billionth of a second. The team’s observation of proton motion with an accuracy of 100 attoseconds in hydrogen and methane molecules is the fastest ever recorded. Dr John Tisch of Imperial College London says:


"Slicing up a second into intervals as miniscule as 100 attoseconds, as our new technique enables us to do, is extremely hard to conceptualise. It’s like chopping up the 630 million kilometres from here to Jupiter into pieces as wide as a human hair."

Professor Jon Marangos, Director of the Blackett Laboratory Laser Consortium at Imperial, says this new technique means scientists will now be able to measure and control the ultra-fast dynamics of molecules. He says:

"Control of this kind underpins an array of future technologies, such as control of chemical reactions, quantum computing and high brightness x-ray light sources for material processing. We now have a much clearer insight into what is happening within molecules and this allows us to carry out more stringent testing of theories of molecular structure and motion. This is likely to lead to improved methods of molecular synthesis and the nano-fabrication of a new generation of materials."

Lead author Dr Sarah Baker of Imperial College believes that the technique is also exciting because of its experimental simplicity. She says:

"We are very excited by these results, not only because we have ’watched’ motion occurring faster than was previously possible, but because we have achieved this using a compact and simple technique that will make such study accessible to scientists around the world."

To make this breakthrough, scientists used a specially built laser system capable of producing extremely brief pulses of light. This pulsed light has an oscillating electrical field that exerts a powerful force on the electrons surrounding the protons, repeatedly tearing them from the molecule and driving them back into it.

This process causes the electrons to carry a large amount of energy, which they release as an x-ray photon before returning to their original state. How bright this x-ray is depends on how far the protons move in the time between the electrons’ removal and return. The further the proton moves, the lower the intensity of the x-ray, allowing the team to measure how far a proton has moved during the electron oscillation period.

Abigail Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht A Keen Sense for Molecules
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Good vibrations feel the force
23.02.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>