Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists capture the speediest ever motion in a molecule

03.03.2006


The fastest ever observations of protons moving within a molecule open a new window on fundamental processes in chemistry and biology, researchers report today in the journal Science.



Their capturing of the movements of the lightest and therefore speediest components of a molecule will allow scientists to study molecular behaviour previously too fast to be detected. It gives a new in-depth understanding of how molecules behave in chemical processes, providing opportunities for greater study and control of molecules, including the organic molecules that are the building blocks of life.

The high speed at which protons can travel during chemical reactions means their motion needs to be measured in units of time called ’attoseconds’, with one attosecond equating to one billion-billionth of a second. The team’s observation of proton motion with an accuracy of 100 attoseconds in hydrogen and methane molecules is the fastest ever recorded. Dr John Tisch of Imperial College London says:


"Slicing up a second into intervals as miniscule as 100 attoseconds, as our new technique enables us to do, is extremely hard to conceptualise. It’s like chopping up the 630 million kilometres from here to Jupiter into pieces as wide as a human hair."

Professor Jon Marangos, Director of the Blackett Laboratory Laser Consortium at Imperial, says this new technique means scientists will now be able to measure and control the ultra-fast dynamics of molecules. He says:

"Control of this kind underpins an array of future technologies, such as control of chemical reactions, quantum computing and high brightness x-ray light sources for material processing. We now have a much clearer insight into what is happening within molecules and this allows us to carry out more stringent testing of theories of molecular structure and motion. This is likely to lead to improved methods of molecular synthesis and the nano-fabrication of a new generation of materials."

Lead author Dr Sarah Baker of Imperial College believes that the technique is also exciting because of its experimental simplicity. She says:

"We are very excited by these results, not only because we have ’watched’ motion occurring faster than was previously possible, but because we have achieved this using a compact and simple technique that will make such study accessible to scientists around the world."

To make this breakthrough, scientists used a specially built laser system capable of producing extremely brief pulses of light. This pulsed light has an oscillating electrical field that exerts a powerful force on the electrons surrounding the protons, repeatedly tearing them from the molecule and driving them back into it.

This process causes the electrons to carry a large amount of energy, which they release as an x-ray photon before returning to their original state. How bright this x-ray is depends on how far the protons move in the time between the electrons’ removal and return. The further the proton moves, the lower the intensity of the x-ray, allowing the team to measure how far a proton has moved during the electron oscillation period.

Abigail Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>