Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Part-time pulsar yields new insight into inner workings of cosmic clocks

03.03.2006


Astronomers using the 76-m Lovell radio telescope at the University of Manchester’s Jodrell Bank Observatory have discovered a very strange pulsar that helps explain how pulsars act as ‘cosmic clocks’ and confirms theories put forward 37 years ago to explain the way in which pulsars emit their regular beams of radio waves - considered to be one of the hardest problems in astrophysics. Their research, now published in Science Express, reveals a pulsar that is only ‘on’ for part of the time. The strange pulsar is spinning about its own axis and slows down 50% faster when it is ‘on’ compared to when it is ‘off’.



Pulsars are dense, highly magnetized neutron stars that are born in a violent explosion marking the death of massive stars. They act like cosmic lighthouses as they project a rotating beam of radio waves across the galaxy. Dr. Michael Kramer explains, "Pulsars are a physicist’s dream come true. They are made of the most extreme matter that we know of in the Universe, and their highly stable rotation makes them super-precise cosmic clocks. But, embarrassingly, we do not know how these clocks work. This discovery goes a long way towards solving this problem."

The research team, led by Dr. Michael Kramer, found a pulsar that is only periodically active. It appears as a normal pulsar for about a week and then “switches off” for about one month before emitting pulses again. The pulsar, called PSR B1931+24, is unique in this behaviour and affords astronomers an opportunity to compare its quiet and active phases. As it is quiet the majority of the time, it is difficult to detect, suggesting that there may be many other similar objects that have, so far, escaped detection.


Prof. Andrew Lyne points out that, “After the discovery of pulsars, theoreticians proposed that strong electric fields rip particles out of the neutron star surface into a surrounding magnetised cloud of plasma called the magnetosphere. But, for nearly 40 years, there had been no way to test whether our basic understanding was correct."

The University of Manchester astronomers were delighted when they found that this pulsar slows down more rapidly when the pulsar is on than when it is off. Dr. Christine Jordan points out the importance of this discovery, "We can clearly see that something hits the brakes when the pulsar is on.”

This breaking mechanism must be related to the radio emission and the processes creating it and the additional slow-down can be explained by a wind of particles leaving the pulsar’s magnetosphere and carrying away rotational energy. “Such a braking effect of the pulsar wind was expected but now, finally, we have observational evidence for it” adds Dr Duncan Lorimer.

The amount of braking can be related to the number of charges leaving the pulsar magnetosphere. Dr. Michael Kramer explains their surprise when it was found that the resulting number was within 2% of the theoretical predictions. "We were really shocked when we saw these numbers on our screens. Given the pulsar’s complexity, we never really expected the magnetospheric theory to work so well."

Prof. Andrew Lyne summarized the result: "It is amazing that, after almost 40 years, we have not only found a new, unusual, pulsar phenomenon but also a very unexpected way to confirm some fundamental theories about the nature of pulsars."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>