Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venerable ultraviolet satellite returns to operations

24.02.2006


NASA’s Far Ultraviolet Spectroscopic Explorer astronomy satellite is back in full operation, its aging onboard software control system rejuvenated and its mission extended by enterprising scientists and engineers after a near-death experience in December 2004.



Observations with the orbiting telescope resumed Nov. 1, 2005, about ten months after the third of four onboard reaction wheels, used to precisely point the spacecraft and hold it steady, stopped spinning. After two months of experience tweaking the new control system in November and December, FUSE operations returned in January to a level of efficiency comparable to earlier in the mission, mission managers said.

"It’s really a level of performance that we never thought we would see again," said William Blair, a research professor in physics and astronomy at Johns Hopkins and FUSE’s chief of observatory operations. "The old satellite still has some spunk."


FUSE was launched in June 1999. Late in 2001, two of the reaction wheels failed in quick succession, leaving the satellite temporarily unusable. That time, science operations were successfully resumed within about two months through a modification of flight control software and development of a creative new technique to establish fine pointing control.

"The project aggressively pursued a similar track this time, but it was even harder with just one operational reaction wheel," said George Sonneborn, FUSE project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. "Some people would say what we’re doing is nearly impossible."

Initially, at least three reaction wheels were required for the spacecraft to conduct its scientific mission. The revised control mode developed in 2001 utilized the two remaining reaction wheels and drafted the satellite’s magnetic torquer bars into the effort to provide control in all three axes. The MTBs (essentially, controllable electromagnets) apply forces on the satellite by interacting with Earth’s magnetic field. Now, the FUSE control system has been modified again to use magnetic control on two axes, which provides a tenuous but acceptable level of control in place of the missing reaction wheels.

"It’s like we had three strong muscles originally, and could point FUSE wherever we wanted to," Blair said. "Now we have to control the pointing with one strong muscle and two weak muscles. The revised control software is like a good physical therapist, teaching the satellite to compensate."

Since its launch, FUSE has obtained more than 52 million seconds of science data on everything from planets and comets in our solar system to distant quasars and active galaxies, and every major class of object in between. This information, compiled in the form of spectrographs rather than visual images, provides astronomers with details about the physical properties and characteristics of objects, from temperatures and densities to chemical makeup.

Observations from the satellite have been used to discover an extended, tenuous halo of very hot gas surrounding our Milky Way galaxy, and have found evidence of similar hot gas haloes around other galaxies. FUSE also has also detected molecular hydrogen in the atmosphere of the planet Mars for the first time. This has implications for the water history of our frozen neighbor. In addition, FUSE observations first detected molecular nitrogen in dense interstellar gas and dust clouds, but at levels well below what astronomers had expected, requiring a return to the drawing board for theories of interstellar chemistry.

NASA has twice extended what originally was planned as FUSE’s three-year mission to carry out a broad range of science programs for hundreds of astronomers from around the world. To date, more than 350 publications based on FUSE observations have been published in the professional astronomy literature and many more are on the way. A new set of planned observations for the coming year was accepted in December 2005 by NASA, and the first of these has already been obtained.

"The recovery of FUSE operations is a tremendous testament to the dedication and ingenuity of the scientists and engineers at Johns Hopkins and at the Orbital Sciences Corp.," said Warren Moos, professor of physics and astronomy and principal investigator for FUSE. "There are a large number of astronomers in line waiting for FUSE observations that are now being undertaken once again."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>