Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venerable ultraviolet satellite returns to operations

24.02.2006


NASA’s Far Ultraviolet Spectroscopic Explorer astronomy satellite is back in full operation, its aging onboard software control system rejuvenated and its mission extended by enterprising scientists and engineers after a near-death experience in December 2004.



Observations with the orbiting telescope resumed Nov. 1, 2005, about ten months after the third of four onboard reaction wheels, used to precisely point the spacecraft and hold it steady, stopped spinning. After two months of experience tweaking the new control system in November and December, FUSE operations returned in January to a level of efficiency comparable to earlier in the mission, mission managers said.

"It’s really a level of performance that we never thought we would see again," said William Blair, a research professor in physics and astronomy at Johns Hopkins and FUSE’s chief of observatory operations. "The old satellite still has some spunk."


FUSE was launched in June 1999. Late in 2001, two of the reaction wheels failed in quick succession, leaving the satellite temporarily unusable. That time, science operations were successfully resumed within about two months through a modification of flight control software and development of a creative new technique to establish fine pointing control.

"The project aggressively pursued a similar track this time, but it was even harder with just one operational reaction wheel," said George Sonneborn, FUSE project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. "Some people would say what we’re doing is nearly impossible."

Initially, at least three reaction wheels were required for the spacecraft to conduct its scientific mission. The revised control mode developed in 2001 utilized the two remaining reaction wheels and drafted the satellite’s magnetic torquer bars into the effort to provide control in all three axes. The MTBs (essentially, controllable electromagnets) apply forces on the satellite by interacting with Earth’s magnetic field. Now, the FUSE control system has been modified again to use magnetic control on two axes, which provides a tenuous but acceptable level of control in place of the missing reaction wheels.

"It’s like we had three strong muscles originally, and could point FUSE wherever we wanted to," Blair said. "Now we have to control the pointing with one strong muscle and two weak muscles. The revised control software is like a good physical therapist, teaching the satellite to compensate."

Since its launch, FUSE has obtained more than 52 million seconds of science data on everything from planets and comets in our solar system to distant quasars and active galaxies, and every major class of object in between. This information, compiled in the form of spectrographs rather than visual images, provides astronomers with details about the physical properties and characteristics of objects, from temperatures and densities to chemical makeup.

Observations from the satellite have been used to discover an extended, tenuous halo of very hot gas surrounding our Milky Way galaxy, and have found evidence of similar hot gas haloes around other galaxies. FUSE also has also detected molecular hydrogen in the atmosphere of the planet Mars for the first time. This has implications for the water history of our frozen neighbor. In addition, FUSE observations first detected molecular nitrogen in dense interstellar gas and dust clouds, but at levels well below what astronomers had expected, requiring a return to the drawing board for theories of interstellar chemistry.

NASA has twice extended what originally was planned as FUSE’s three-year mission to carry out a broad range of science programs for hundreds of astronomers from around the world. To date, more than 350 publications based on FUSE observations have been published in the professional astronomy literature and many more are on the way. A new set of planned observations for the coming year was accepted in December 2005 by NASA, and the first of these has already been obtained.

"The recovery of FUSE operations is a tremendous testament to the dedication and ingenuity of the scientists and engineers at Johns Hopkins and at the Orbital Sciences Corp.," said Warren Moos, professor of physics and astronomy and principal investigator for FUSE. "There are a large number of astronomers in line waiting for FUSE observations that are now being undertaken once again."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>