Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA joins forces with Japan on new infrared sky surveyor

23.02.2006


A high-capability new infrared satellite, ASTRO-F, was successfully launched last night by the Japan Aerospace Exploration Agency (JAXA). In a collaborative effort involving ESA and scientists across Europe, the spacecraft is now being prepared to start its mapping of the cosmos.

Orbiting the Earth, ASTRO-F (to be renamed Akari (light) now that it is in orbit) will make an unprecedented study of the sky in infrared light, to reveal the distant phenomena hidden from our eyes that tell the story of the formation and evolution processes taking place in the universe.

Prof. David Southwood, ESA’s Director of Science, said: “The successful launch of ASTRO-F(Akari) is a big step. A decade ago, our Infrared Space Observatory (ISO) opened up this field of astronomy, and the Japanese took part then. It is wonderful to be cooperating again with Japan in this discipline.”



“Our involvement with the Japanese in this programme responds to our long-term commitment in infrared astronomy, whose potential for discovery is huge. We are now off and rolling with ASTRO-F/Akari, but we are also working extremely hard towards the launch of the next-generation infrared telescope, ESA’s Herschel spacecraft, which will go up in the next two years,” he continued.

“This will still not be the end of the story. Infrared astronomy is also a fundamental part of the future vision for ESA’s space research, as outlined in the ‘Cosmic Vision 2015-2025’ programme. The truth is, subjects such as the formation of stars and exoplanets, or the evolution of the early universe, are themes at the very core of our programme.”

The mission

On 21 February, at 22:28 Central European Time, (22 February, 06:28 local time), a Japanese M-V rocket blasted off from the Uchinoura Space Centre, in the Kagoshima district of Japan, carrying the new infrared satellite into space.

In about two weeks’ time, ASTRO-F will be in polar orbit around the Earth at an altitude of 745 kilometres. From there, after two months of system check-outs and performance verification, it will survey the whole sky in about half a year, with much better sensitivity, spatial resolution and wider wavelength coverage than its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite (1983).

The all-sky survey will be followed by a ten-month phase during which thousands of selected astronomical targets will be observed in detail. This will enable scientists to look at these individual objects for a longer time, and thus with increased sensitivity, to conduct their spectral analysis.

This second phase will end with the depletion of the liquid helium needed to cool down the spacecraft telescope and its instruments to only a few degrees above absolute zero. ASTRO-F will then start its third operations phase and continue to make observations of selected celestial targets with its infrared camera only, in a few specific infrared wavelengths.

ESA’s involvement

Only two decades have passed since the birth of space-based infrared astronomy; since then, each decade has been marked by the launch of innovative infrared satellites that have revolutionised our very perception of the cosmos.

In fact, infrared satellites make possible the detection of cool objects, including planetary systems, interstellar dust and gas, or distant galaxies, all of which are most difficult to study in the visible part of the light spectrum. With infrared astronomy, it is also possible to study the birth of stars and galaxies, the ‘creation’ energy of which peaks in the infrared range.

The European Space Agency and Europe have a strong tradition in infrared astronomy, which is now being continued by the participation of the UK, the Netherlands and ESA in ASTRO-F. ESA is providing network support through its ground station in Kiruna (Sweden) for a few passes per day.

ESA is also providing expertise and support for the sky-survey data processing. This includes ‘pointing reconstruction’ – which means measuring exactly where the observed objects are in the sky, to help accelerate the production of sky catalogues and ultimately produce a census of the infrared universe.

In return, ESA has obtained ten percent of the observing opportunities during the second and third operational phases of the ASTRO-F mission, which is being allocated to European astronomers to perform their proposed observations.

“The cooperation offered to ESA by Japan in ASTRO-F will help keep up momentum for European astronomers as they build on their past work with ISO, and look forward to the launch of ESA’s Herschel infrared mission, in early 2008,” commented Prof. Southwood.

With the largest and most powerful space telescope to date (3.5 metres in diameter), Herschel will build on the ASTRO-F census of the infrared universe and on the legacy left by other satellites such as ESA’s ISO and NASA’s Spitzer. It will reveal the deepest secrets of galaxies and of star formation and evolution, while also studying the chemistry of the cold, hidden cosmos.

| alfa
Further information:
http://www.esa.int/esaCP/SEM2MAMVGJE_index_0.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>