Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists Step Closer to Understanding Origin of the Universe


The world’s largest particle detector is nearing completion following the construction of its ‘endcap’ at the University of Liverpool.

Its assembly of advanced apparatus, at the University’s Semiconductor Detector Centre, has been a joint effort by physicists, engineers and technicians from the Universities of Liverpool, Glasgow, Lancaster, Manchester and Sheffield as well as Daresbury and Rutherford Laboratories.

The endcap is part of a semiconductor tracker (SCT) based at the heart of ATLAS - a giant particle detector the size of a five-storey building. The SCT will become part of the world’s largest particle accelerator – the Large Hadron Collider (LHC), based at CERN, the European Centre for Particle Physics Research, in Switzerland.

The LHC is being constructed 100 metres underground in a 16-mile long circular tunnel, running under the Franco-Swiss border. Inside the tunnel two particle beams will be accelerated to extremely high energies, and will crash into each other forty million times a second, creating a snapshot of conditions that existed billionths of a second after the ‘Big Bang’. ATLAS, the culmination of 15 years’ work by over 150 European institutions, aims to find the Higgs particle that holds the key to understanding the origin of mass.

Dr Neil Jackson, from the University’s Department of Physics, explains: “Using the LHC we are aiming to discover the Higgs particle and hoping to find evidence for so-called Super-Symmetric particles, which we believe could offer an explanation for the ‘dark matter’ in the universe. At present the normal matter that we can see in the universe accounts for only 5% of its mass. The origin of the missing mass is unknown, but Super-Symmetric particles may account for some of it. If we discover these particles then we are on our way to explaining why the universe is made the way it is.

“At Liverpool we have tested 988 detector modules and assembled them into one of two SCT endcaps. The modules will detect the reactions produced as the accelerator collides billions of protons in the centre of ATLAS. The particles produced in these collisions are recorded as they pass through the endcaps. The collisions will be strong enough to recreate particles and reactions that were present fractions of a second after the Big Bang.”

The Big Bang theory is the dominant scientific theory about the origin of the universe. It suggests that the universe was created sometime between 10 billion and 20 billion years ago from a cosmic explosion that hurled matter in all directions.

The conditions that will be reproduced at LHC will correspond to approximately 1/10,000,000,000 of a second after the ‘Big Bang’ when the temperature was 1,000,000,000,000,000 degrees. Large detectors will electronically register the movement and position of charged particles allowing physicists to analyse the reactions that created

The endcap will begin its journey to Switzerland later this month. Dr Jackson added: “We have to be extremely careful that the endcap we have constructed does not become damaged on its journey to Switzerland. We have just completed a trial run of the journey, using a dummy load to represent the endcap. Accelerometers and position-sensitive detectors were positioned on the transport frame to monitor the machine and we tested driving conditions with emergency stops, sleeping policemen, gradients and motorway driving. The results of the test were very encouraging.”


1. The University of Liverpool is one of the UK’s leading research institutions. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £90 million annually.

2. The SCT is a collaborative international project involving UK physicists from university research groups at: Birmingham, Cambridge, Glasgow, Lancaster, Liverpool, Manchester, Oxford, Queen Mary University of London, CCLRC, Sheffield and University College London.

3. CERN the European Organisation for Nuclear Research, the world’s largest particle physics centre. CERN is a laboratory where scientists study the building blocks of matter and the forces that hold them together. It exists to provide scientists with the necessary tools. These are accelerators, which accelerate particles to the speed of light and detectors to make particles visible.

4. The Council for the Central Laboratory of the Research Councils (CCLRC) owns and operates the Rutherford Appleton Laboratory in Oxfordshire, the Daresbury Laboratory in Cheshire and the Chilbolton Observatory in Hampshire.

Samantha Martin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>