Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Step Closer to Understanding Origin of the Universe

22.02.2006


The world’s largest particle detector is nearing completion following the construction of its ‘endcap’ at the University of Liverpool.



Its assembly of advanced apparatus, at the University’s Semiconductor Detector Centre, has been a joint effort by physicists, engineers and technicians from the Universities of Liverpool, Glasgow, Lancaster, Manchester and Sheffield as well as Daresbury and Rutherford Laboratories.

The endcap is part of a semiconductor tracker (SCT) based at the heart of ATLAS - a giant particle detector the size of a five-storey building. The SCT will become part of the world’s largest particle accelerator – the Large Hadron Collider (LHC), based at CERN, the European Centre for Particle Physics Research, in Switzerland.


The LHC is being constructed 100 metres underground in a 16-mile long circular tunnel, running under the Franco-Swiss border. Inside the tunnel two particle beams will be accelerated to extremely high energies, and will crash into each other forty million times a second, creating a snapshot of conditions that existed billionths of a second after the ‘Big Bang’. ATLAS, the culmination of 15 years’ work by over 150 European institutions, aims to find the Higgs particle that holds the key to understanding the origin of mass.

Dr Neil Jackson, from the University’s Department of Physics, explains: “Using the LHC we are aiming to discover the Higgs particle and hoping to find evidence for so-called Super-Symmetric particles, which we believe could offer an explanation for the ‘dark matter’ in the universe. At present the normal matter that we can see in the universe accounts for only 5% of its mass. The origin of the missing mass is unknown, but Super-Symmetric particles may account for some of it. If we discover these particles then we are on our way to explaining why the universe is made the way it is.

“At Liverpool we have tested 988 detector modules and assembled them into one of two SCT endcaps. The modules will detect the reactions produced as the accelerator collides billions of protons in the centre of ATLAS. The particles produced in these collisions are recorded as they pass through the endcaps. The collisions will be strong enough to recreate particles and reactions that were present fractions of a second after the Big Bang.”

The Big Bang theory is the dominant scientific theory about the origin of the universe. It suggests that the universe was created sometime between 10 billion and 20 billion years ago from a cosmic explosion that hurled matter in all directions.

The conditions that will be reproduced at LHC will correspond to approximately 1/10,000,000,000 of a second after the ‘Big Bang’ when the temperature was 1,000,000,000,000,000 degrees. Large detectors will electronically register the movement and position of charged particles allowing physicists to analyse the reactions that created
them.

The endcap will begin its journey to Switzerland later this month. Dr Jackson added: “We have to be extremely careful that the endcap we have constructed does not become damaged on its journey to Switzerland. We have just completed a trial run of the journey, using a dummy load to represent the endcap. Accelerometers and position-sensitive detectors were positioned on the transport frame to monitor the machine and we tested driving conditions with emergency stops, sleeping policemen, gradients and motorway driving. The results of the test were very encouraging.”

Notes

1. The University of Liverpool is one of the UK’s leading research institutions. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £90 million annually.

2. The SCT is a collaborative international project involving UK physicists from university research groups at: Birmingham, Cambridge, Glasgow, Lancaster, Liverpool, Manchester, Oxford, Queen Mary University of London, CCLRC, Sheffield and University College London.

3. CERN the European Organisation for Nuclear Research, the world’s largest particle physics centre. CERN is a laboratory where scientists study the building blocks of matter and the forces that hold them together. It exists to provide scientists with the necessary tools. These are accelerators, which accelerate particles to the speed of light and detectors to make particles visible.

4. The Council for the Central Laboratory of the Research Councils (CCLRC) owns and operates the Rutherford Appleton Laboratory in Oxfordshire, the Daresbury Laboratory in Cheshire and the Chilbolton Observatory in Hampshire.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>