Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid galaxy merging dominates universe’s early history

21.02.2006


A study by an academic at The University of Nottingham gives us the first observational evidence for how massive galaxies in our universe formed.



The implications of the study are vast and are being used by astronomers to explain seemingly unrelated processes such as how massive black holes and the universe’s stars came to be.

The research, led by Dr Christopher J Conselice, of the University’s School of Physics and Astronomy, which is published in the February 20 edition of the Astrophysical Journal, uses the deepest images taken by the Hubble Space Telescope to study galaxies when they were only two billion years old. His team has found that the majority of the most massive galaxies in the early universe are undergoing multiple and spectacular mergers.


These mergers lead to the creation of new stars from colliding gas clouds and likely feed and grow the masses of black holes lurking in the centre of all galaxies.

The work is helping to definitively confirm what scientists have long hoped for — massive galaxies form when smaller galaxies merge together — a major and previously unconfirmed prediction of the cosmological standard model.

“The results show us that the most massive galaxies we see in today’s universe, which are passive and old, were once undergoing rapid mergers with each other, which it turns out is how they form,” said Dr Conselice.

While distant galaxies have been studied for over a decade, it has until now remained a mystery how they evolved into the galaxies we see today.

Young galaxies have very low masses and astronomers have long been puzzled by how these systems turn into massive galaxies in the local universe. The Conselice results demonstrate that a typical massive galaxy in today’s universe has undergone four to five mergers with other galaxies to transform from these young low mass systems into the giant galaxies.

These mergers are very rare today, with only about one per cent of galaxies merging, while 10 billion years ago, nearly all massive galaxies were undergoing mergers. An analysis technique developed by Conselice for more than 10 years was used on the deepest images ever taken of the universe to make these discoveries.

The results further show that massive galaxies did not form rapidly, within a few million years after the Big Bang, or form gradually over an extended period of time. In a surprising finding, almost all of this merger activity occurs over a very short period of time, from the birth of the universe to about six billion years ago.

Dr Conselice added: “Perhaps the most amazing thing about these results is that massive galaxy formation is largely over when the universe is half its current age. This means that all this merging activity was somehow curtailed by an unknown process.”

The research may hold clues about the formation of our own galaxy. The Milky Way contains spiral arms, which are not thought to form through the merger process. However, at the centre of our galaxy is a spherical system of stars called a bulge — a high-density region featuring many old stars and a massive black hole — which probably formed as a result of these mergers.

The research could also help astronomers to see into the Milky Way’s future — it is possible that our galaxy will itself merge with Andromeda, our nearest neighbouring large galaxy in around a billion years from now. This would see the destruction of the spiral disk that surrounds the bulge and change dramatically the shape of our galaxy, as well as significantly altering the positions of stars we see in the night sky.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>