Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST method may help optimize light-emitting semiconductors

20.02.2006


Physicists at JILA have demonstrated an ultrafast laser technique for "seeing" once-hidden electronic behavior in semiconductors, which eventually could be useful in more predictable design of optoelectronic devices, including semiconductor lasers and white light-emitting diodes.


What do you see in these Rorschach-blot-like images? JILA physicists see the once-hidden electronic behavior of semiconductors. The computer plots show how energy intensity (ranging from low in blue to high in red) varies as electronic structures called excitons absorblaser light and emit energy at various frequencies. The pair of similar "butterflies" indicates that an exciton is absorbing and emitting energy in a predictable pattern. Credit: JILA



The work at JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado at Boulder, is described in the Feb. 10 issue of Physical Review Letters.

The technique manipulates light energy and wave patterns to reveal subtle behavior, such as correlated oscillations of two objects. Such correlations are important because they may allow researchers to more accurately predict the emission frequencies produced by an optoelectronic device based on its structure and semiconductor materials.


The method was developed originally by other researchers years ago for probing couplings between spinning nuclei as an indicator of molecular structure, and it led to a Nobel prize; more recently, scientists have been trying to use it to study vibrations in chemical bonds. The JILA team is the first to show the approach offers new insights into electronic properties of semiconductors. The use of light as a precision tool to manage electronic behavior could lead to improved optoelectronic devices.

In the JILA technique, a sample made of thin layers of gallium arsenide is hit with a continuous series of three near-infrared laser pulses lasting just 100 femtoseconds each. Trillions of electronic structures called excitons are formed. They consist of "excited" electrons and the "holes" they leave behind as they jump to higher energy vibration patterns. By changing the timing of the laser pulses and analyzing the wave patterns of the light and exciton oscillations, the JILA scientists figured out how to produce and identify correlations between absorption and emission of light from the material. The presence or absence of correlations can be seen in a computer plot of the frequency and wave pattern of the absorbed and emitted light. Correlations are revealed as a pair of similar butterfly-shaped plots.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>