Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant inferno: Cornell astronomer finds galaxies that contain massive young stars in compact, cosmic globs

17.02.2006


The discovery makes the fiery environment within a typical spiral or starburst galaxy look almost pastoral. Cornell researchers using the Spitzer Space Telescope say distant galaxies contain an inferno of very young, massive and violently evolving stars, packed together in tiny but extremely powerful cosmic globs.


Provided
Spectral lines from distant ultra-luminous infrared galaxies, as recorded by the Spitzer Space Telescope’s infrared spectrograph, show the telltale bumps (in green) indicating the presence of crystalline silicates.


Provided
This image illustrates how two galaxies could be torn apart by their mutual attraction, causing whole strains of stars to be catapulted out to form something like antennae. The galaxies’ nuclei would dance around each other and eventually merge to form a single nucleus.



The key to the discovery, paradoxically, is in the presence of delicate, glittery crystalline silicates called Forsterite. These are glassy particles that exist in the debris disks of young stars and in the stellar wind of very old stars, but which have never before been observed in the mass of gas and dust known as the interstellar medium, or ISM, in the Milky Way or in any other galaxy.

The research, led by Cornell astronomer and Spitzer Fellow Henrik Spoon, will appear in the Feb. 20 issue of the Astrophysical Journal.


Using Spitzer’s infrared spectrograph (IRS), an instrument developed by a team led by Cornell professor of astronomy James Houck and built at Cornell, Spoon and colleagues observed dozens of distant galaxies known as ultra-luminous infrared galaxies (ULIRGs). First discovered in large numbers in 1982, most ULIRGs are thought to form as two or more spiral galaxies collide (as our galaxy will, in a few billion years, with the nearby Andromeda galaxy), and their leftover hydrogen gas fuels the fierce, rapid formation of massive stars.

ULIRGs are relative runts in galactic terms (though some have sweeping tidal tails), with the source of their luminosity coming from an area as small as one-hundredth that of typical galaxies. Seen with an optical telescope, they look dusty, chaotic and unspectacular. But in the mid-infrared spectrum, said Spoon, "they are booming," appearing up to 100 times more luminous than a spiral or starburst galaxy.

Silicates are the most common types of minerals in the Milky Way, so their presence in ULIRGs is not surprising. But among the silicates, most (95 percent in the immediate vicinity of rapidly evolving stars and at least 99 percent in the general ISM) are amorphous in structure.

Spoon and his team saw the expected broad absorption features of amorphous silicates in the infrared spectra of the ULIRGs they observed. But they also saw signature narrow dips within the broad bumps indicating the presence of silicates in crystalline form in the general ISM. The concentration of crystalline silicates in at least 21 ULIRGs, Spoon found, is seven to 15 times greater than in any other known environment.

In our galaxy, crystalline silicates have only been observed close to active new stars, which inject them into their immediate environment as they evolve, and in the exhaled winds of dying stars. Subject to heavy pummeling by destructive cosmic and shock-accelerated ions, the silicates quickly lose their ordered, crystalline structure and take an amorphous shape.

"We were surprised to find such delicate little crystals in the centers of some of the most violent places in the universe," said Spoon. "Given the rapid transformation of crystalline silicates to an amorphous state, the injection rate of freshly produced crystalline silicates must be far higher than in our galaxy. We’re probing exotic circumstances."

Spitzer’s IRS, which can record infrared spectra from objects fainter and farther away than ever before, has allowed astronomers to study ULIRGs and other stellar nurseries in new detail.

"Now we can take a good look at what these characteristics are," said Spoon. "It’s like, for the first time, you put on a pair of glasses, and -- wow."

The Spitzer Space Telescope is the last of NASA’s Great Observatories. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the Spitzer mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>