Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant inferno: Cornell astronomer finds galaxies that contain massive young stars in compact, cosmic globs

17.02.2006


The discovery makes the fiery environment within a typical spiral or starburst galaxy look almost pastoral. Cornell researchers using the Spitzer Space Telescope say distant galaxies contain an inferno of very young, massive and violently evolving stars, packed together in tiny but extremely powerful cosmic globs.


Provided
Spectral lines from distant ultra-luminous infrared galaxies, as recorded by the Spitzer Space Telescope’s infrared spectrograph, show the telltale bumps (in green) indicating the presence of crystalline silicates.


Provided
This image illustrates how two galaxies could be torn apart by their mutual attraction, causing whole strains of stars to be catapulted out to form something like antennae. The galaxies’ nuclei would dance around each other and eventually merge to form a single nucleus.



The key to the discovery, paradoxically, is in the presence of delicate, glittery crystalline silicates called Forsterite. These are glassy particles that exist in the debris disks of young stars and in the stellar wind of very old stars, but which have never before been observed in the mass of gas and dust known as the interstellar medium, or ISM, in the Milky Way or in any other galaxy.

The research, led by Cornell astronomer and Spitzer Fellow Henrik Spoon, will appear in the Feb. 20 issue of the Astrophysical Journal.


Using Spitzer’s infrared spectrograph (IRS), an instrument developed by a team led by Cornell professor of astronomy James Houck and built at Cornell, Spoon and colleagues observed dozens of distant galaxies known as ultra-luminous infrared galaxies (ULIRGs). First discovered in large numbers in 1982, most ULIRGs are thought to form as two or more spiral galaxies collide (as our galaxy will, in a few billion years, with the nearby Andromeda galaxy), and their leftover hydrogen gas fuels the fierce, rapid formation of massive stars.

ULIRGs are relative runts in galactic terms (though some have sweeping tidal tails), with the source of their luminosity coming from an area as small as one-hundredth that of typical galaxies. Seen with an optical telescope, they look dusty, chaotic and unspectacular. But in the mid-infrared spectrum, said Spoon, "they are booming," appearing up to 100 times more luminous than a spiral or starburst galaxy.

Silicates are the most common types of minerals in the Milky Way, so their presence in ULIRGs is not surprising. But among the silicates, most (95 percent in the immediate vicinity of rapidly evolving stars and at least 99 percent in the general ISM) are amorphous in structure.

Spoon and his team saw the expected broad absorption features of amorphous silicates in the infrared spectra of the ULIRGs they observed. But they also saw signature narrow dips within the broad bumps indicating the presence of silicates in crystalline form in the general ISM. The concentration of crystalline silicates in at least 21 ULIRGs, Spoon found, is seven to 15 times greater than in any other known environment.

In our galaxy, crystalline silicates have only been observed close to active new stars, which inject them into their immediate environment as they evolve, and in the exhaled winds of dying stars. Subject to heavy pummeling by destructive cosmic and shock-accelerated ions, the silicates quickly lose their ordered, crystalline structure and take an amorphous shape.

"We were surprised to find such delicate little crystals in the centers of some of the most violent places in the universe," said Spoon. "Given the rapid transformation of crystalline silicates to an amorphous state, the injection rate of freshly produced crystalline silicates must be far higher than in our galaxy. We’re probing exotic circumstances."

Spitzer’s IRS, which can record infrared spectra from objects fainter and farther away than ever before, has allowed astronomers to study ULIRGs and other stellar nurseries in new detail.

"Now we can take a good look at what these characteristics are," said Spoon. "It’s like, for the first time, you put on a pair of glasses, and -- wow."

The Spitzer Space Telescope is the last of NASA’s Great Observatories. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the Spitzer mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>