Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fresh Spin in Quantum Physics: The ‘Spin Triplet’ Supercurrent

17.02.2006


For the first time, scientists have created a “spin triplet” supercurrent through a ferromagnet over a long distance. Achieved with a magnet developed at Brown University and the University of Alabama, the feat upends long-standing theories of quantum physics – and may be a boon to the budding field of “spintronics,” where the spin of electrons, along with their charge, is harnessed to power computer chips and circuits. Results are published in Nature.



Superconductivity occurs when electrical current moves without resistance, a phenomenon that gave rise to particle accelerators, magnetic resonance imagining machines and trains that float, friction-free, on their tracks.

Under quantum physics theory, conventional superconductivity is not supposed to occur in ferromagnets. When electrons pass through these crystalline materials, they realign in ways that won’t allow resistance-free conductivity. While supercurrent through a ferromagnet has been observed, it moved only an extremely short distance before resistance kicked in.


But a team of scientists from Delft University of Technology, Brown University and the University of Alabama has now accomplished this physics feat, creating a “spin triplet” supercurrent through a unique ferromagnet.

As explained in the current issue of Nature, the team’s experimental system converts the spin, or rotation, of pairs of electrons in such a way that suggests they exist in three quantum states inside the new magnet. There’s the standard “spin up” and “spin down” – a reference to an electron’s angular momentum – but also a middle state. Picture a planet that was thought to rotate two ways: With its North Pole pointing up or pointing down. But now it’s found that this planet can be made to rotate on its side, with its North Pole pointing out in a 90-degree angle.

While such a “spin triplet” conversion in a ferromagnet was predicted in theory, the team offers the first experimental evidence for the phenomenon.

The team also showed that this current travels a comparatively long distance. In previous experiments, current passed through a ferromagnet sandwiched between superconductors spaced one nanometer apart. Under the new system, the space between superconductors was 300 nanometers apart.

“It’s a beautiful thing,” said Gang Xiao, a Brown professor of physics. “What we’ve done was considered almost impossible. But physicists never take ‘no’ for an answer.”

Xiao spent eight years perfecting the ferromagnet with Brown graduate students and colleagues from the University of Alabama. The magnet is black, about the size of a postage stamp, and measures only 1,000 atoms thick. To make it, chromium oxide was heated until it vaporized. That vapor was transported onto a titanium oxide film, so that only a single crystal layer coated the titanium material.

The magnet was sent to scientists at Delft University of Technology in the Netherlands. A team there placed dozens of tiny superconducting electrodes on top of the magnet then used an electron beam to cut the electrodes, creating the 300-nanometer gap between them. Scientists then tested the system to measure the flow of current.

Xiao hopes that the new ferromagnet can help create technologies in the hot new field of “spintronics,” short for spin-based electronics. While conventional electronics tap the charge of an electron to conduct current, spintronic devices use the spin as well as the charge. The promise: smaller, faster and cheaper computer memory storage and processing.

Already, spintronic technology can be found in computer hard drives. A magnetic version of a random access memory device and a spin-based transistor are under development. So are “quantum computers,” which can perform hyperfast calculations.

Xiao said the spin triplet current created with the ferromagnet would allow for new control in spintronics development.

“Once you understand this new behavior of electrons, you can apply the knowledge in new ways to commercial products,” he said. “The consequences can be significant.”

The Nederlandse Organisatie voor Wetenschappelijk Onderzoek and the National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>