Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The SIXS instrument by Finnish astronomers goes to Mercury

16.02.2006


The European Space Agency (ESA) is launching a mission to Mercury, in which there is significant Finnish involvement. On Thursday 9 February 2006, the Science Programme Committee of the ESA held a meeting to approve the agency’s next cornerstone programme, the spacecraft named BepiColombo, which is due to be launched towards Mercury in 2013.



The ESA is building a planetary probe which will end up on a low elliptical orbit around Mercury for at least one year. The orbiter will carry with it cameras which can take accurate images of different wavelengths of the surface of this exotic and little-known planet, and also equipment for measuring local particle radiation and the intensity of the Sun. The Finns will be strongly involved especially in these measurements with their instrument built in Finland.

SIXS measures the Sun’s X-ray and particle radiation


In the spring of 2004, a consortium from Finland responded with their proposal to the Announcement of Opportunity to build scientific instruments for the planetary probe of ESA’s BepiColombo. In the autumn of the same year, the proposal led by the Department of Astronomy at the University of Helsinki for equipment for measuring X-radiation and particle radiation was officially approved as one of the payload elements of BepiColombo. The Principal Investigator for the instrument called SIXS (Solar Intensity and particle X-ray Spectrometer) is Dr Juhani Huovelin from the Department of Astronomy.

Finnish researchers are also involved at a Co-Principal Investigator (Co-PI) level for the British MIXS (Mercury Imaging X-ray Spectrometer) X-ray camera, which will map the elemental abundances of the surface of Mercury. The Finnish Co-PI of MIXS is Dr Karri Muinonen, also from the Department of Astronomy at the University of Helsinki.

The Finnish consortium for these projects also include researchers from the Departments of Physical Sciences and Chemistry of the University of Helsinki and from the Finnish Meteorological Institute. Several commercial companies are involved as sub-contractors. Their task is to make the technical design and procure the equipment.

In addition to the Mercury Planetary Orbiter (MPO) to be launched in August 2013, the spacecraft will also carry a Japanese Mercury Magnetospheric Orbiter (MMO), which contains special equipment for measuring the planet’s magnetosphere and the magnetic field. This package of two orbiters will reach a permanent orbit around Mercury at the end of next decade, and will produce scientific data only in 2018–20, which makes BepiColombo a very long term project. Cornerstone missions like BepiColombo are the key elements in the European Space Agency’s long-term scientific plan.

MIXS and SIXS will increase Finland’s hi-tech expertise and raise the level of science

The design and construction of the orbiter’s scientific payload is taking place in co-operative projects under the leadership of researchers from ESA’s member states, and they are funded mainly by the member states themselves. Usually several countries are involved in the construction of the equipment, because the development of entirely new technology for the cutting-edge equipment needs expertise from many fields, and for missions into Space, only the best is good enough. The design of a new generation of equipment that can operate reliably in Space for years without any maintenance is also expensive, and these days, the Space-related budget of small countries is barely sufficient for the construction of even one device.

About one million euros a year over several years is being spent on the Finnish SIXS instrument and the Finnish contribution in the MIXS camera. This investment, which is already being funded by Tekes (the National Technology Agency in Finland) for the first year, is improving the instrument group’s expertise and international competitiveness in high technology, the benefits of which may be reaped many times over in the long term. On the other hand, the instrument science group will be able to utilise their own instrument data very effectively, being internationally competitive in the science achievements obtained with this mission.

Minna Meriläinen | alfa
Further information:
http://www.helsinki.fi

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>