Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini cameras spot powerful new lightning storm on Saturn


Following the recent detection of Saturnian radio bursts by NASA’s Cassini spacecraft that indicated a rare and powerful atmospheric storm, Cassini imaging scientists have spotted the storm in an unlikely fashion: they looked for it in the dark.

When lightning-generated radio noise from the storm was detected by Cassini on January 23, the spacecraft was at a place in its orbit where it was unable to image the sunlit side of Saturn. Instead, imaging scientists searched for the southern hemisphere storm in images of the planet’s night side. Fortunately, the small amount of sunlight reflecting off Saturn’s rings and illuminating the night side is enough to make features in the atmosphere visible.

Images showing the storm can be found at, and

The storm is located on the side of Saturn that faces the spacecraft when the radio emissions are detected; Cassini does not observe the radio emissions for half a Saturnian day when the storm is on the planet’s other side.

The latitude of the new storm matches that of the "Dragon storm," which was a powerful emitter of radio noise and was imaged by Cassini in 2004. It lies in a region of the southern hemisphere referred to as "storm alley" by scientists because of the high level of storm activity observed there by Cassini. The storm’s north-south dimension is about 3,500 kilometers (2,175 miles).

"It’s really the only large storm on the whole planet," says Andrew Ingersoll, a member of the Cassini imaging team. "It’s in the right place and it appeared at the right time to match the radio emissions, so it has to be the right storm," he said.

Cassini’s investigation of the storm has also been aided by the efforts of Earth-based amateur astronomers, who were able view Saturn’s dayside with their telescopes when Cassini could not. The amateurs’ images of Saturn provided the first visual confirmation of the storm, now revealed in detail by the new views from Cassini.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team consists of scientists from the U.S., England, France, and Germany. The imaging operations center and team leader (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

Preston Dyches | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>