Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First RAVE data release offers clues to Milky Way evolution

13.02.2006


An international team of astronomers released to the public the first data collected as part of the Radial Velocity Experiment, an ambitious spectroscopic survey aimed at measuring the speed, temperature, surface gravity and composition of up to a million stars passing near the sun.



The measurements, released at an astrophysics workshop at the Aspen Center for Physics in Colorado and available today online to other astronomers, includes examination of old "fossil" stars that were born when our Milky Way galaxy was in its infancy. Team members posit that such data may eventually provide evidence to back up theories that our galaxy has -- over time -- "cannibalized" other, smaller galaxies and is "digesting" them.

"Our research focuses on the oldest stars, and probes the earliest phases of the evolution of our home galaxy, the Milky Way," said Rosemary Wyse, a professor in the Henry A. Rowland Department of Physics and Astronomy in Johns Hopkins’ Krieger School of Arts and Sciences and a member of the RAVE team. "The unprecedented sample available with RAVE will allow me -- and now, with the release of this data, others -- to test ideas of our origins laid out by various cosmological theories."


The team also includes members from the United States, Germany, Australia, Canada, the Netherlands, the United Kingdom, Slovenia, Italy, Switzerland and France.

The survey has been made possible by the unique capabilities of the "six-degree field" multi-object spectrograph on the 1.2-meter UK Schmidt Telescope of the Anglo-Australian Observatory, located at Siding Spring Observatory in New South Wales, Australia. This instrument is capable of obtaining spectroscopic information for as many as 150 stars at once, from an area of the sky equal to more than 150 times the area covered by the full moon.

"The data we are making public today is twice the sample size of any previous survey, and has extremely high quality," Wyse said. "Other astronomers can definitely use these data in their work. All they have to do is go to our Web site and download it."

The RAVE survey measures the velocities of stars along the line of sight, something that has previously been difficult to obtain for such large samples of stars. Data from RAVE’s first year of operation consists of information from some 25,000 stars, including measurement of their brightness, color and motion across the sky.

"This data set will provide a unique resource for all astronomers working in the field of galactic evolution and, with our public data release, the astronomical community can participate in our endeavor," says Tomaz Zwitter of the Ljubljana University in Slovenia and project scientist of the RAVE survey. "This first sample by itself is already two times the size of the previous largest survey of stars near the sun."

Matthias Steinmetz, director of the Astrophysical Institute Potsdam, and leader of the RAVE collaboration, predicted that "the full RAVE survey will provide a vast resource of stellar motions and chemical abundances, allowing us to answer fundamental questions of the formation and evolution of our galaxy."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.rave-survey.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>