Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First RAVE data release offers clues to Milky Way evolution

13.02.2006


An international team of astronomers released to the public the first data collected as part of the Radial Velocity Experiment, an ambitious spectroscopic survey aimed at measuring the speed, temperature, surface gravity and composition of up to a million stars passing near the sun.



The measurements, released at an astrophysics workshop at the Aspen Center for Physics in Colorado and available today online to other astronomers, includes examination of old "fossil" stars that were born when our Milky Way galaxy was in its infancy. Team members posit that such data may eventually provide evidence to back up theories that our galaxy has -- over time -- "cannibalized" other, smaller galaxies and is "digesting" them.

"Our research focuses on the oldest stars, and probes the earliest phases of the evolution of our home galaxy, the Milky Way," said Rosemary Wyse, a professor in the Henry A. Rowland Department of Physics and Astronomy in Johns Hopkins’ Krieger School of Arts and Sciences and a member of the RAVE team. "The unprecedented sample available with RAVE will allow me -- and now, with the release of this data, others -- to test ideas of our origins laid out by various cosmological theories."


The team also includes members from the United States, Germany, Australia, Canada, the Netherlands, the United Kingdom, Slovenia, Italy, Switzerland and France.

The survey has been made possible by the unique capabilities of the "six-degree field" multi-object spectrograph on the 1.2-meter UK Schmidt Telescope of the Anglo-Australian Observatory, located at Siding Spring Observatory in New South Wales, Australia. This instrument is capable of obtaining spectroscopic information for as many as 150 stars at once, from an area of the sky equal to more than 150 times the area covered by the full moon.

"The data we are making public today is twice the sample size of any previous survey, and has extremely high quality," Wyse said. "Other astronomers can definitely use these data in their work. All they have to do is go to our Web site and download it."

The RAVE survey measures the velocities of stars along the line of sight, something that has previously been difficult to obtain for such large samples of stars. Data from RAVE’s first year of operation consists of information from some 25,000 stars, including measurement of their brightness, color and motion across the sky.

"This data set will provide a unique resource for all astronomers working in the field of galactic evolution and, with our public data release, the astronomical community can participate in our endeavor," says Tomaz Zwitter of the Ljubljana University in Slovenia and project scientist of the RAVE survey. "This first sample by itself is already two times the size of the previous largest survey of stars near the sun."

Matthias Steinmetz, director of the Astrophysical Institute Potsdam, and leader of the RAVE collaboration, predicted that "the full RAVE survey will provide a vast resource of stellar motions and chemical abundances, allowing us to answer fundamental questions of the formation and evolution of our galaxy."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.rave-survey.org

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>